考慮控制有界的四旋翼系統(tǒng)的鎮(zhèn)定設(shè)計(jì)與仿真
發(fā)布時(shí)間:2024-02-15 01:04
本文從硬件和軟件兩個(gè)方面對(duì)四旋翼姿態(tài)控制系統(tǒng)的鎮(zhèn)定問題進(jìn)行了研究。在硬件部分,將各個(gè)功能組件組裝后得到了可用于實(shí)時(shí)研究分析的四旋翼平臺(tái)。在軟件部分,本文對(duì)具有控制受限的四旋翼飛行器姿態(tài)控制系統(tǒng)的鎮(zhèn)定問題進(jìn)行了研究。討論了兩種全局鎮(zhèn)定四旋翼姿態(tài)控制系統(tǒng)的方法,一種是具有控制受限的多個(gè)積分器系統(tǒng)的全局鎮(zhèn)定方法,另一種是具有控制受限的非線性前饋系統(tǒng)的全局鎮(zhèn)定方法。此外,還采用了高增益觀測(cè)器(HGO)來提高閉環(huán)系統(tǒng)對(duì)不確定性的魯棒性,并減少了對(duì)狀態(tài)變量測(cè)量的個(gè)數(shù)。本文還利用MATLAB對(duì)所討論的鎮(zhèn)定算法進(jìn)行了數(shù)值仿真。仿真結(jié)果表明,所采用的控制器具有良好的控制效果,并相比其他方法有一定的優(yōu)越性。
【文章頁數(shù)】:131 頁
【學(xué)位級(jí)別】:碩士
【文章目錄】:
摘要
Abstract
Chapter1 Introduction to Quadrotor
1.1 Introduction
1.2 MAV Configurations
1.2.1 Helicopters Compared to Other Flying Principles
1.2.2 Configurations Comparison of Short VTOL
1.2.3 Configurations of Candidate VTOL for Future MAV
1.3 Quadrotor History
1.4 Vertical Take-off and Landing(VTOL)Aircraft
1.5 Significance of the Study
1.6 Applications
1.7 Literature Review and Analysis
1.7.1 Status of Current Research
1.8 Summary
Chapter2 Working and Assembly of Quadrotor
2.1 Introduction
2.1.1 Radio Transmitters and Receivers
2.1.2 Flight Controller
2.1.3 Electronic Speed Control(ESCs)
2.2 Quadrotor Technology
2.2.1 Commercial Quadrotors
2.2.2 Open-Source and University Developed Quadrotors
2.3 Components Detail Used in the Project
2.3.1 Brushless Quadrotor Motors
2.3.2 Propellers
2.3.3 Battery
2.3.4 Frame
2.3.5 Power Divider
2.3.6 Global Positioning System(GPS)
2.3.7 Inertial Measurement Unit(IMU)
2.3.8 Flight Controller(add details of additional ICs like MPU-6000,Voltage regulator LG33)
2.3.9 Electronic Speed Controller(ESC)
2.3.10 Radio Telemetry
2.3.11 Radio Transmitter or Remote Controller and Receiver
2.4 Conclusion
Chapter3 Theoretical Analysis and Simulink Design of Global Stabilization control forQuadrotor Aircraft
3.1 Model Description of Quadrotor
3.2 Euler-Lagrange Formalism
3.2.1 Rotation Matrix
3.2.2 Angular Rates
3.3 State-Space Model
3.4 Control Law Design
3.4.1 Preliminaries
3.4.2 Altitude and Yaw Control
3.4.3 Pitch and Roll Control on Linearized Model
3.4.4 Pitch and Roll Control Based on Nonlinear Model
3.5 Simulation Design of Analyzed Control
3.5.1 Dynamic Model
3.5.2 Altitude and Yaw Control
3.5.3 Pitch and Roll Control
3.6 Simulation Results
3.7 Simulation Results with Disturbance or Interference
3.8 Comparison of different Control Designs
3.9 High-Gain Observers(HGOs)
3.10 Comparison of Controller Results with and without Observers
3.11 Conclusion
Chapter4 Coding of Global Stabilization Control for Quadrotor Aircraft
4.1 Control Algorithm to Implement
4.2 MATLAB Code to Design Stabilization Control Algorithm
4.3 Final MATLAB Code
4.4 Embedded C/C++coding for ARM Controller
4.5 Conclusion
Chapter5 Future Developments
5.1 Future Developments
結(jié)論
Conclusion
APPENDIX
A.MATLAB Code to Assign Parameters
B.MATLAB Code to Design Stabilization Control Algorithm
C.Final MATLAB Code
D.Embedded C++Programming
References
Acknowledgement
本文編號(hào):3898925
【文章頁數(shù)】:131 頁
【學(xué)位級(jí)別】:碩士
【文章目錄】:
摘要
Abstract
Chapter1 Introduction to Quadrotor
1.1 Introduction
1.2 MAV Configurations
1.2.1 Helicopters Compared to Other Flying Principles
1.2.2 Configurations Comparison of Short VTOL
1.2.3 Configurations of Candidate VTOL for Future MAV
1.3 Quadrotor History
1.4 Vertical Take-off and Landing(VTOL)Aircraft
1.5 Significance of the Study
1.6 Applications
1.7 Literature Review and Analysis
1.7.1 Status of Current Research
1.8 Summary
Chapter2 Working and Assembly of Quadrotor
2.1 Introduction
2.1.1 Radio Transmitters and Receivers
2.1.2 Flight Controller
2.1.3 Electronic Speed Control(ESCs)
2.2 Quadrotor Technology
2.2.1 Commercial Quadrotors
2.2.2 Open-Source and University Developed Quadrotors
2.3 Components Detail Used in the Project
2.3.1 Brushless Quadrotor Motors
2.3.2 Propellers
2.3.3 Battery
2.3.4 Frame
2.3.5 Power Divider
2.3.6 Global Positioning System(GPS)
2.3.7 Inertial Measurement Unit(IMU)
2.3.8 Flight Controller(add details of additional ICs like MPU-6000,Voltage regulator LG33)
2.3.9 Electronic Speed Controller(ESC)
2.3.10 Radio Telemetry
2.3.11 Radio Transmitter or Remote Controller and Receiver
2.4 Conclusion
Chapter3 Theoretical Analysis and Simulink Design of Global Stabilization control forQuadrotor Aircraft
3.1 Model Description of Quadrotor
3.2 Euler-Lagrange Formalism
3.2.1 Rotation Matrix
3.2.2 Angular Rates
3.3 State-Space Model
3.4 Control Law Design
3.4.1 Preliminaries
3.4.2 Altitude and Yaw Control
3.4.3 Pitch and Roll Control on Linearized Model
3.4.4 Pitch and Roll Control Based on Nonlinear Model
3.5 Simulation Design of Analyzed Control
3.5.1 Dynamic Model
3.5.2 Altitude and Yaw Control
3.5.3 Pitch and Roll Control
3.6 Simulation Results
3.7 Simulation Results with Disturbance or Interference
3.8 Comparison of different Control Designs
3.9 High-Gain Observers(HGOs)
3.10 Comparison of Controller Results with and without Observers
3.11 Conclusion
Chapter4 Coding of Global Stabilization Control for Quadrotor Aircraft
4.1 Control Algorithm to Implement
4.2 MATLAB Code to Design Stabilization Control Algorithm
4.3 Final MATLAB Code
4.4 Embedded C/C++coding for ARM Controller
4.5 Conclusion
Chapter5 Future Developments
5.1 Future Developments
結(jié)論
Conclusion
APPENDIX
A.MATLAB Code to Assign Parameters
B.MATLAB Code to Design Stabilization Control Algorithm
C.Final MATLAB Code
D.Embedded C++Programming
References
Acknowledgement
本文編號(hào):3898925
本文鏈接:http://sikaile.net/kejilunwen/hangkongsky/3898925.html
最近更新
教材專著