天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > 航空航天論文 >

航空薄壁件鉚接變形分析及預(yù)測(cè)研究

發(fā)布時(shí)間:2019-05-15 17:34
【摘要】:鉚接是飛機(jī)裝配中主要的連接形式之一。航空薄壁件單點(diǎn)鉚接會(huì)產(chǎn)生局部微小變形,并在批量鉚接過(guò)程中積累疊加,從而導(dǎo)致裝配體整體產(chǎn)生扭曲和翹曲變形,影響飛機(jī)結(jié)構(gòu)件的裝配準(zhǔn)確度以及疲勞壽命。新型超音速隱身飛機(jī)對(duì)結(jié)構(gòu)的裝配準(zhǔn)確度、外形準(zhǔn)確度和疲勞壽命要求進(jìn)一步提高,必須嚴(yán)格控制鉚接產(chǎn)生的變形。導(dǎo)致鉚接變形的因素眾多并相互交織,且各種因素對(duì)鉚接變形的影響規(guī)律及其相互耦合關(guān)系極為復(fù)雜,局部單釘鉚接引起的微小變形在批量鉚接時(shí)的累加規(guī)律仍有待深入研究。因此,研究航空薄壁件鉚接變形的預(yù)測(cè)理論、探索變形控制方法對(duì)于提高飛機(jī)裝配技術(shù)水平具有重要的理論意義和工程應(yīng)用價(jià)值。本文以“局部-整體”的研究思路,采用理論分析、數(shù)值計(jì)算、實(shí)驗(yàn)研究和智能優(yōu)化等多種研究方法,從鉚接變形行為的機(jī)理入手,對(duì)航空薄壁件的鉚接變形機(jī)理和多鉚釘結(jié)構(gòu)變形累積規(guī)律進(jìn)行深入研究,力圖通過(guò)鉚接工藝參數(shù)的控制達(dá)到對(duì)鉚接變形的控制目的。論文的主要工作與創(chuàng)新如下:1、提出了基于接觸關(guān)系的兩階段單釘鉚接分析方法,建立了壓鉚力及干涉量與鐓頭幾何尺寸關(guān)系解析模型、母材徑向擴(kuò)展量與壓鉚力及干涉量關(guān)系解析模型。以鉚接過(guò)程中鉚釘與母材的接觸關(guān)系為判斷依據(jù),提出了單釘鉚接過(guò)程的兩階段力學(xué)分析方法。以翁克索夫表面摩擦力分布理論為基礎(chǔ),充分考慮鐓頭變形的非均勻性,建立了鐓頭幾何尺寸與壓鉚力關(guān)系解析模型。發(fā)現(xiàn)了鉚接時(shí)鐓頭下方存在下壓傾角,以體積不變?cè)瓌t建立了干涉量與鐓頭幾何尺寸關(guān)系解析模型。忽略厚度方向應(yīng)力對(duì)徑向擴(kuò)展的影響,以均勻干涉量為前提,利用厚壁筒受壓理論,建立了薄壁件徑向擴(kuò)展變形與徑向壓應(yīng)力關(guān)系解析模型。2、提出了基于思維進(jìn)化算法優(yōu)化BP神經(jīng)網(wǎng)絡(luò)的單釘鉚接變形預(yù)測(cè)方法,建立了考慮回彈的基于半波壓鉚力加載的鉚接變形數(shù)值計(jì)算模型。以靜、動(dòng)態(tài)力學(xué)性能試驗(yàn)及摩擦系數(shù)測(cè)定試驗(yàn),建立了母材7075-T651和鉚釘2A10-T4兩種材料的Johnson-Cook本構(gòu)模型,確定了兩種材料間、鉚釘與T8A鉚模材料間的動(dòng)摩擦系數(shù)。通過(guò)工程常用鉚接參數(shù)設(shè)定,并考慮鉚接回彈對(duì)變形的影響,建立了基于半波壓鉚力加載的鉚接變形數(shù)值計(jì)算模型,獲取了薄壁件變形的彈塑性邊界范圍以及應(yīng)力、應(yīng)變、位移的變化規(guī)律,結(jié)果表明薄壁件厚度方向變形量較徑向擴(kuò)展量大一個(gè)數(shù)量級(jí),驗(yàn)證了鐓頭下壓傾角的存在。選取鉚接工藝人員可控制的壓鉚力、鉚釘長(zhǎng)度、釘/孔間隙三個(gè)工藝參數(shù)作為輸入量,以干涉量、薄壁件隨徑向位置的厚度方向變形量為輸出量,提出了基于思維進(jìn)化算法優(yōu)化BP神經(jīng)網(wǎng)絡(luò)的單釘鉚接變形預(yù)測(cè)方法。3、研究了單釘單因素鉚接工藝參數(shù)對(duì)薄壁件厚度方向變形的影響規(guī)律,根據(jù)單因素分析獲得的最優(yōu)取值,以鉚釘間距、鉚接順序?yàn)樽兞?建立了雙釘、三釘、四釘和十釘鉚接結(jié)構(gòu)的鉚接變形數(shù)值計(jì)算模型。通過(guò)對(duì)鉚接過(guò)程涉及的參數(shù)進(jìn)行分類(lèi),確定影響鉚接變形的關(guān)鍵工藝參數(shù)為壓鉚力、釘桿長(zhǎng)度、釘/孔間隙等。結(jié)果表明:單釘單因素情況下,鉚接工藝參數(shù)對(duì)薄壁件變形的影響存在最優(yōu)取值;多釘鉚接時(shí),以薄壁件變形最小為目標(biāo),獲得了鉚釘間距與鉚釘直徑的最優(yōu)比值。4、提出了粒子群/支持向量回歸機(jī)的多釘鉚接變形預(yù)測(cè)及優(yōu)化方法。以鉚接順序?yàn)檩斎肓?薄壁件厚度方向最大變形為輸出量,提出了粒子群優(yōu)化支持向量回歸機(jī)的多釘鉚接薄壁件變形預(yù)測(cè)方法。根據(jù)鉚接工藝參數(shù)對(duì)薄壁件厚度方向變形的影響規(guī)律,建立了十釘雙排結(jié)構(gòu)的鉚接變形預(yù)測(cè)模型。在預(yù)測(cè)模型經(jīng)實(shí)驗(yàn)驗(yàn)證了正確性的基礎(chǔ)上,以薄壁件最大變形最小化為目標(biāo),提出了基于粒子群算法的鉚接順序優(yōu)化方法以控制鉚接引起的變形,并通過(guò)實(shí)驗(yàn)驗(yàn)證了該智能算法對(duì)于解決多釘鉚接順序優(yōu)化問(wèn)題的有效性。
[Abstract]:Riveting is one of the main forms of connection in aircraft assembly. The single-point riveting of the aviation thin-wall piece can produce the local micro-deformation and accumulate the superposition during the batch riveting process, thus leading to the distortion and the warping deformation of the whole assembly body, thus affecting the assembly accuracy and the fatigue life of the aircraft structural member. The assembly accuracy, appearance accuracy and fatigue life requirement of the new supersonic stealth aircraft are further improved, and the deformation of the riveting must be strictly controlled. The factors that lead to the riveting deformation are many and are intertwined, and the influence of various factors on the riveting deformation and the mutual coupling relation are very complicated. The accumulation law of the micro-deformation caused by the local single-nail riveting still needs to be researched deeply. Therefore, the research of the prediction theory of the riveting deformation of the aviation thin-wall parts, and the exploration of the deformation control method have important theoretical and engineering application value for improving the aircraft assembly technology level. In this paper, by means of the research of the "local-integral", a variety of research methods such as the theoretical analysis, the numerical calculation, the experimental research and the intelligent optimization are adopted to study the riveting deformation mechanism and the deformation accumulation rule of the multi-rivet structure from the mechanism of the riveting deformation behavior. The control of the riveting deformation is to be achieved by the control of the riveting process parameters. The main work and innovation of the paper are as follows:1. The two-stage single-nail riveting analysis method based on the contact relation is put forward, and the analytical model of the pressure-riveting force and the interference quantity and the geometric dimension of the hammer head is established, and the relationship between the radial expansion of the base material and the pressure-riveting force and the interference quantity is established. Based on the contact relation between the rivet and the base material during the riveting process, the two-stage mechanical analysis method of the single-screw riveting process is put forward. On the basis of the theory of the friction force distribution on the surface of the Ong Sov, the non-uniformity of the deformation of the head is fully considered, and the analytical model of the relation between the geometric dimension of the head and the pressure-riveting force is established. An analytical model of the relationship between the amount of interference and the geometric dimension of the head is established by the principle of volume change. The influence of the stress on the radial expansion in the thickness direction is neglected, and the radial expansion deformation of the thin-wall part and the relation analysis model of the radial compressive stress are established by using the pressure theory of the thick-wall cylinder based on the pressure theory of the thick-wall cylinder. The method of single-screw riveting deformation prediction based on the optimization of BP neural network based on the thought evolution algorithm is put forward, and the numerical calculation model of the riveting deformation based on half-wave pressure riveting is established. The Johnson-Cook constitutive model of the two materials of the base metal 7075-T651 and the rivet 2A10-T4 was established by the static, dynamic mechanical property test and the friction coefficient determination test. The dynamic friction coefficient between the two materials, the rivet and the T8A rivet material was determined. By setting the common riveting parameters of the project and considering the influence of the riveting rebound on the deformation, a numerical calculation model of the riveting deformation based on the half-wave pressure riveting force loading is established, the elastic-plastic boundary range of the deformation of the thin-wall part and the change law of the stress, the strain and the displacement are obtained, The results show that the deformation in the thickness direction of the thin-wall piece is an order of magnitude larger than that of the radial expansion, and the existence of the dip angle of the pressure head is verified. the pressure riveting force, the rivet length, the nail/ hole gap and the three process parameters which can be controlled by the riveting process personnel are selected as the input quantity, the amount of deformation of the thin-wall part along with the thickness direction of the radial position is the output quantity, A method of single-screw riveting deformation prediction based on the optimization of BP neural network based on the thought evolution algorithm is presented.3. The influence of single-nail single factor riveting process parameters on the deformation of the thickness direction of the thin-wall part is studied. The optimum value obtained from the single-factor analysis is obtained, and the rivet pitch and the riveting sequence are the variables. The numerical calculation model of the riveting deformation of the two-nail, three-nail, four-nail and ten-nail riveting structure was established. By classifying the parameters involved in the riveting process, the key process parameters affecting the riveting deformation are the pressure riveting force, the length of the nail rod, the nail/ hole gap, and the like. The results show that the influence of the riveting process parameters on the deformation of the thin-walled part is the best value in the case of single-nail, and the optimal ratio of the rivet spacing to the diameter of the rivet is obtained when the multi-nail is riveted, and the optimal ratio of the rivet spacing and the diameter of the rivet is obtained. In this paper, a multi-pin riveting deformation prediction and optimization method for particle swarm/ support vector regression machine is proposed. In this paper, the deformation prediction method of multi-pin riveting thin-wall parts of the particle swarm optimization support vector regression machine is put forward, in order of the input quantity and the maximum deformation of the thickness direction of the thin-wall piece as the output quantity. According to the influence law of the riveting process parameters on the thickness direction deformation of the thin-wall part, a riveting deformation prediction model of the ten-nail double-row structure is established. Based on the experimental verification of the prediction model, the optimization method of the riveting sequence based on the particle swarm optimization is proposed to control the deformation caused by the riveting. And the effectiveness of the intelligent algorithm for solving the problem of multi-pin riveting sequence optimization is verified by experiments.
【學(xué)位授予單位】:西北工業(yè)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2015
【分類(lèi)號(hào)】:V262.4

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 宮文強(qiáng),冷長(zhǎng)庚,劉立和;輔助支承在薄壁件加工中的應(yīng)用[J];機(jī)械制造;2004年01期

2 李文;一種高精度環(huán)形薄壁件工藝方法的探討[J];機(jī)械工人.冷加工;2004年04期

3 袁春曉,馮曉露;一種校直磨削加工中薄壁件變形的方法[J];機(jī)械制造;2004年12期

4 陳蔚芳;樓佩煌;陳華;;薄壁件加工變形主動(dòng)補(bǔ)償方法[J];航空學(xué)報(bào);2009年03期

5 汪濤;賈愛(ài)青;;大型高精度薄壁件的以車(chē)代磨試驗(yàn)[J];金屬加工(冷加工);2009年04期

6 石明良;;巧卸薄壁件[J];機(jī)械工人技術(shù)資料;1975年12期

7 高志祥;談?wù)劚”诩亩x域[J];航空標(biāo)準(zhǔn)化;1982年04期

8 吳鳴玉;;薄壁件縱焊縫焊接機(jī)[J];機(jī)械設(shè)計(jì)與制造;1990年02期

9 尹三元,張喜春;大直徑薄壁件的磨削[J];機(jī)械工人.冷加工;1991年11期

10 趙根生,熊華紹;小型薄壁件擠塑模的設(shè)計(jì)[J];模具工業(yè);1993年11期

相關(guān)會(huì)議論文 前10條

1 萬(wàn)秀屏;譚薇;范鑫;馮欣明;文寶林;;某大型薄壁件車(chē)加工變形質(zhì)量控制[A];第九屆沈陽(yáng)科學(xué)學(xué)術(shù)年會(huì)論文集(信息科學(xué)與工程技術(shù)分冊(cè))[C];2012年

2 李燕;董愛(ài)娟;;加工薄壁件安裝面工藝探討[A];2009全國(guó)機(jī)電企業(yè)工藝年會(huì)<廈工杯>工藝征文論文集[C];2009年

3 廖勇軍;;薄壁件網(wǎng)格技術(shù)及計(jì)算經(jīng)濟(jì)性研究[A];2013中國(guó)汽車(chē)工程學(xué)會(huì)年會(huì)論文集[C];2013年

4 韓曉光;張鳳英;翟婷婷;;空間曲面薄壁件柔性裝配定位系統(tǒng)設(shè)計(jì)與實(shí)現(xiàn)[A];第十五屆中國(guó)科協(xié)年會(huì)第13分會(huì)場(chǎng):航空發(fā)動(dòng)機(jī)設(shè)計(jì)、制造與應(yīng)用技術(shù)研討會(huì)論文集[C];2013年

5 彭昌永;高福全;范如源;;鋁合金薄壁件的點(diǎn)焊及表面處理[A];中國(guó)工程物理研究院科技年報(bào)(2003)[C];2003年

6 欒宇;解潤(rùn)鋒;;大型薄壁件-轉(zhuǎn)輪室精加工分析[A];第七屆(2009)中國(guó)鋼鐵年會(huì)論文集(下)[C];2009年

7 劉宇;傅戈雁;石世宏;王晨;;光內(nèi)送粉激光熔覆堆積扭曲薄壁件工藝參數(shù)的控制[A];第15屆全國(guó)特種加工學(xué)術(shù)會(huì)議論文集(下)[C];2013年

8 曹栩;駱合力;李尚平;張喜娥;馮滌;;Ni_3Al基合金薄壁件熔模精鑄工藝研究[A];動(dòng)力與能源用高溫結(jié)構(gòu)材料——第十一屆中國(guó)高溫合金年會(huì)論文集[C];2007年

9 梁朝堅(jiān);;鋁合金薄壁件鑄件變形研究分析[A];2009重慶市鑄造年會(huì)論文集[C];2009年

10 丁春艷;楊振國(guó);;聚碳酸酯薄壁件分層失效機(jī)制的研究[A];2007年中國(guó)機(jī)械工程學(xué)會(huì)年會(huì)論文集[C];2007年

相關(guān)博士學(xué)位論文 前9條

1 陳W,

本文編號(hào):2477670


資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/hangkongsky/2477670.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶1dd26***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com