基于有限元法的定向凝固過程溫度場(chǎng)數(shù)值模擬的研究
[Abstract]:In the field of aeronautics and astronautics, a directional solidification process is used to produce turbine blades, while the high-performance turbine blades have been the biggest obstacle to the realization of the "a large plane" 's dream in our country. The actual directional solidification process is a very complicated material forming process, and it is necessary to take special consideration of the influence of radiation heat transfer. By adopting the directional solidification temperature field simulation technology, the temperature field evolution process in the solidification process of the casting can be effectively analyzed, the possible defects can be predicted, and the theoretical guidance is provided for optimizing the directional solidification process. In this paper, the numerical simulation of the finite element directional solidification temperature field is deeply studied, including the mathematical modeling of the directional solidification temperature field, the finite element numerical solution, the liquid metal cooling liquid heat treatment and the directional solidification temperature field analysis criterion, etc. The numerical simulation system of the finite element directional solidification temperature field is developed. First, because the radiation heat transfer needs to be taken into consideration in the numerical simulation of the directional solidification temperature field, the ray tracing method is adopted to deal with it, and the control equation of the radiation heat transfer boundary condition is obtained by computer graphics. The temperature field model of the directional solidification process is established by a series of relative reasonable assumptions and simplification to the directional solidification process, and the control equation and the boundary condition of the temperature field of the directional solidification process are combined according to the finite element numerical calculation theory. The finite element discrete process and the method for solving the numerical simulation of the temperature field in the directional solidification process are derived in detail. Secondly, the latent heat of the casting is treated by using the equivalent specific method and the temperature correction method so as to satisfy the energy conservation principle. aiming at the along-the-type shell boundary of the directional solidification process, an intelligent searching type shell inner and outer surface algorithm is adopted, the inner and outer surfaces of each material are automatically distinguished, the tedious operation of the manual selection of the user is avoided, and the convection heat exchange boundary conditions of each contact surface are treated by adopting a box tree method, And the convection heat exchange boundary conditions between the materials can be more reasonably processed on the basis of more demanding the grid quality. As the medium shell of the LMC (Liquid Metal Cooling) process is gradually immersed in the liquid metal cooling liquid, the heat exchange between the shell and the cooling liquid is treated by the equivalent heat exchange coefficient which is changed with time and temperature in order to avoid the problem of re-partitioning the grid brought by the direct solution. In order to analyze the simulation results of HRS (High Rate Solid) and LMC directional solidification temperature field, the G/ L criterion is used to predict the potential of the casting. At the same time, in order to ensure the calculation efficiency of the finite element simulation system, the concept of the local matrix is put forward, and the calculation matrix of each material is assembled separately during the process of the finite element program. The numerical simulation system of the directional solidification temperature field of the finite element HRS and the LMC was developed by the key techniques. In the end, the temperature field of the air-cooling process of the typical I-piece is calculated by using the temperature field numerical simulation system and the general-purpose finite element platform ANSYS, and the results of the comparison are basically the same, and the accuracy of the finite element algorithm in the numerical simulation system of the temperature field is verified. The temperature field of a set of investment casting process is calculated by the temperature field numerical simulation system, and the initial scheme is due to the poor heat dissipation condition of the middle part of the valve cover. After the improvement process, the cooling rate of the middle part of the valve cover is accelerated, the defect of the hole is eliminated, the qualified valve cover is actually produced, and the practicability of the temperature field numerical simulation system is verified. By adopting the directional solidification temperature field numerical simulation system, the HRS and the LMC process simulation are respectively carried out on the crown turbine blades, and the multi-scheme analysis is carried out by setting different drawing speeds, and the simulation results are consistent with the actual process, The reliability of the numerical simulation system of the finite element directional solidification temperature field is proved, and the scientific guidance can be provided for the actual directional solidification production.
【學(xué)位授予單位】:華中科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:V261.31
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張克福,毛協(xié)民,傅恒志;三維鑄件定向凝固過程模擬Ⅱ——非穩(wěn)態(tài)定向凝固過程邊界元解[J];航空學(xué)報(bào);1993年04期
2 呂衣禮,,魯?shù)卵螅軋蚝,王?薄試樣水平定向凝固過程中界面附近的微觀流場(chǎng)[J];西北工業(yè)大學(xué)學(xué)報(bào);1996年02期
3 喻秋平,周堯和;鑄件定向凝固過程的數(shù)值模擬[J];航空學(xué)報(bào);1984年03期
4 陳亞軍,陳琦,王自東,胡漢起,劉玉敏,連玉棟;定向凝固過程中柱狀晶的生長(zhǎng)機(jī)制[J];清華大學(xué)學(xué)報(bào)(自然科學(xué)版);2004年11期
5 馬旭;鄭麗麗;張輝;鄭志東;;晶硅定向凝固過程中熔液流動(dòng)對(duì)溶質(zhì)分布的影響[J];清華大學(xué)學(xué)報(bào)(自然科學(xué)版);2012年04期
6 王艷麗;郭景杰;傅恒志;;鈦合金冷坩堝定向凝固過程溫度場(chǎng)數(shù)值模擬[J];哈爾濱工業(yè)大學(xué)學(xué)報(bào);2008年11期
7 張國(guó)志;馮妍卉;張欣欣;聶紅;;定向凝固過程中的流動(dòng)效應(yīng)[J];北京科技大學(xué)學(xué)報(bào);2008年05期
8 季誠(chéng)昌,吳中,馬偉增,于峗,李建國(guó),周堯和;TbDyFe合金定向凝固過程中晶體的取向生長(zhǎng)[J];上海交通大學(xué)學(xué)報(bào);2002年05期
9 黃建峰;楊屹;李羽晨;楊軍;吳釙冰;姚進(jìn);;基于元胞自動(dòng)機(jī)法的鋁合金定向凝固過程微觀組織數(shù)值模擬[J];四川大學(xué)學(xué)報(bào)(工程科學(xué)版);2010年06期
10 張克福,毛協(xié)民,傅恒志;HRS定向凝固過程中固/液界面位置控制[J];航空學(xué)報(bào);1988年10期
相關(guān)博士學(xué)位論文 前1條
1 楊璽;冶金法多晶硅真空定向凝固過程的數(shù)值模擬優(yōu)化及應(yīng)用研究[D];昆明理工大學(xué);2015年
相關(guān)碩士學(xué)位論文 前10條
1 陳杭;工業(yè)硅合金精煉過程中硅/合金熔劑的分離與提純[D];江西理工大學(xué);2015年
2 張延寧;Al-Y合金定向凝固過程中小平面相生長(zhǎng)行為研究[D];哈爾濱工業(yè)大學(xué);2015年
3 曹流;基于有限元法的定向凝固過程溫度場(chǎng)數(shù)值模擬的研究[D];華中科技大學(xué);2015年
4 龔鋒;電磁場(chǎng)作用下定向凝固過程流動(dòng)、傳熱、傳質(zhì)的耦合數(shù)值模擬[D];西北工業(yè)大學(xué);2006年
5 李琨;Ti-45Al-5Nb合金定向凝固過程組織演化規(guī)律[D];哈爾濱工業(yè)大學(xué);2011年
6 孫海濱;氧化鋁基共晶陶瓷定向凝固過程的研究[D];山東理工大學(xué);2010年
7 徐益民;AL合金在外加橫向磁場(chǎng)中定向凝固過程的研究[D];遼寧工程技術(shù)大學(xué);2008年
8 李慶林;Ti-45Al包晶合金定向凝固過程中流動(dòng)對(duì)組織的影響[D];西北工業(yè)大學(xué);2007年
9 袁訓(xùn)鋒;二元合金定向凝固過程的相場(chǎng)模擬[D];蘭州理工大學(xué);2008年
10 薛明;定向凝固過程中陶瓷與高溫合金界面研究[D];清華大學(xué);2007年
本文編號(hào):2449252
本文鏈接:http://sikaile.net/kejilunwen/hangkongsky/2449252.html