天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 航空航天論文 >

飛機(jī)客艙地板供熱溫度—熱流反正耦合模型及應(yīng)用

發(fā)布時間:2018-08-12 13:59
【摘要】:飛機(jī)客艙合理的熱邊界條件是創(chuàng)建艙內(nèi)舒適熱環(huán)境的關(guān)鍵因素,是保證乘客舒適性的重要條件。據(jù)研究報(bào)道客艙內(nèi)乘客上半身區(qū)域24℃C以及腳部區(qū)域26℃的溫度分布是理想的熱環(huán)境。鑒于此,根據(jù)該溫度分布需設(shè)計(jì)出合理的飛機(jī)客艙送風(fēng)溫度及地板供熱功率,發(fā)展基于反向求解原理的數(shù)學(xué)計(jì)算模型。根據(jù)指定的艙內(nèi)溫度分布不能直接確定熱邊界條件,可通過一個冗長的迭代、猜測、矯正過程獲得合理的熱邊界條件,該方法雖然可行,但計(jì)算量龐大,工作效率低。為修正這個問題,有必要基于設(shè)計(jì)目標(biāo)建立-種有效的“由果及因”的反向求解模型。本文采用溫度貢獻(xiàn)率(Contribution Ratio of Indoor Climate, CRI)方法將復(fù)雜的能量方程轉(zhuǎn)換為簡單形式的線性系統(tǒng),基于邊界對流換熱量的溫度貢獻(xiàn)率與Tikhonov正則化方法相結(jié)合,應(yīng)用計(jì)算流體動力學(xué)(Computational Fluid Dynamics, CFD)方法建立依據(jù)空間內(nèi)數(shù)個目標(biāo)離散溫度求解所需的邊界對流換熱量的反問題數(shù)學(xué)模型。在穩(wěn)態(tài)流場下,首先將邊界對流換熱量與空間內(nèi)數(shù)個目標(biāo)離散溫度之間表示成因果關(guān)系的CRI矩陣,通過選定合適的Tikhonov正則化參數(shù)確定邊界對流換熱量。再以反模型計(jì)算得到的邊界對流換熱量作為正模型的已知信息,求解邊界溫度及邊界輻射換熱量。因此,所建立的飛機(jī)客艙地板供熱溫度-熱流反正耦合模型包含一個反模型和兩個正模型。CRI矩陣受測點(diǎn)溫度數(shù)量及其分布位置的共同影響,且易于呈現(xiàn)病態(tài)特性;诰仃嚻娈愔捣纸夂途仃囂卣髦捣纸庠,本文提出一種分析溫度測點(diǎn)數(shù)量與位置對溫度-熱流反正耦合模型計(jì)算結(jié)果影響的簡單有效的評價(jià)方法,將矩陣條件數(shù)表述為矩陣特征值的函數(shù)(矩陣的最大特征值與最小特征值之比),以矩陣的最小條件數(shù)作為準(zhǔn)則,應(yīng)用該方法優(yōu)選溫度測點(diǎn)數(shù)量及其分布位置。本文搭建空腔實(shí)驗(yàn)平臺以及選擇真實(shí)飛機(jī)MD-82作為測試空間進(jìn)行試驗(yàn)驗(yàn)證,用測試結(jié)果驗(yàn)證本文所建溫度-熱流反正耦合模型的實(shí)際可行性。基于二維空腔算例,應(yīng)用本文提出的溫度測點(diǎn)數(shù)量與位置對溫度-熱流反正耦合模型計(jì)算結(jié)果的評價(jià)方法對溫度測點(diǎn)進(jìn)行優(yōu)選。以一排座三維飛機(jī)半艙模型(含三位乘客)形成的客艙環(huán)境為算例,對本文建立的溫度-熱流反正耦合模型以及溫度測點(diǎn)數(shù)量與位置對溫度-熱流反正耦合模型計(jì)算結(jié)果的評價(jià)方法進(jìn)行驗(yàn)證。研究結(jié)果表明,空腔實(shí)驗(yàn)臺中兩組實(shí)驗(yàn)工況以及MD-82客艙中實(shí)驗(yàn)工況的實(shí)測結(jié)果與溫度-熱流反正耦合模型的計(jì)算結(jié)果取得了良好一致,驗(yàn)證了溫度-熱流反正耦合模型在實(shí)際應(yīng)用中具有可行性。通過二維空腔算例驗(yàn)證溫度測點(diǎn)數(shù)量與位置對溫度-熱流反正耦合模型計(jì)算結(jié)果的評價(jià)方法,計(jì)算結(jié)果表明若選取的溫度測點(diǎn)數(shù)量多于待求解的熱邊界數(shù)量時,CRJ矩陣將形成長方陣,而長方陣轉(zhuǎn)換為方陣時,增大了原始矩陣的條件數(shù),因此沒有必要選取多于待求解熱邊界數(shù)量的溫度測點(diǎn)。若選取的溫度測點(diǎn)數(shù)量多于待求解的熱邊界數(shù)量,需應(yīng)用矩陣特征值分解原理優(yōu)選溫度測點(diǎn),由于一個溫度測點(diǎn)對應(yīng)CRI矩陣的一個特征值,因此應(yīng)保留矩陣特征值遠(yuǎn)離零的溫度測點(diǎn)。布置在空間內(nèi)固體壁面附近的溫度測點(diǎn)易于感知熱邊界條件所發(fā)生的變化,因此壁面附近是溫度測點(diǎn)位置的理想選擇。流動漩渦中溫度測點(diǎn)彼此之間的溫度很接近,應(yīng)避開這樣的位置。通過三維機(jī)艙算例驗(yàn)證求解熱邊界條件的溫度-熱流反正耦合模型,獲得了合理的機(jī)艙送風(fēng)溫度以及地板供熱總功率;應(yīng)用溫度測點(diǎn)數(shù)量與位置對溫度-熱流反正耦合模型計(jì)算結(jié)果的評價(jià)方法對溫度測點(diǎn)進(jìn)行優(yōu)選后,計(jì)算精度得到了提高。
[Abstract]:Reasonable thermal boundary condition is the key factor to create comfortable thermal environment in the cabin and the important condition to ensure passenger comfort. It is reported that the temperature distribution of upper body area 24 C and foot area 26 C in the cabin is the ideal thermal environment. A mathematical calculation model based on the principle of inverse solution is developed for the air supply temperature and floor heating power. The thermal boundary conditions can not be determined directly according to the specified temperature distribution in the cabin. The reasonable thermal boundary conditions can be obtained through a lengthy iteration, guess and rectification process. Although the method is feasible, the calculation is huge and the work efficiency is low. In this paper, the complex energy equation is transformed into a simple linear system by the method of Contribution Ratio of Indoor Climate (CRI), and the temperature contribution rate based on the boundary convection heat transfer and Tikhonov positive are used. Combining the regularization method with the computational fluid dynamics (CFD) method, the inverse problem mathematical model of the boundary convection heat transfer is established by solving the discrete temperatures of several targets in space. The CRI matrix of the relation is used to determine the boundary convection heat transfer by choosing appropriate Tikhonov regularization parameters, and then the boundary convection heat transfer calculated by the inverse model is taken as the known information of the positive model to solve the boundary temperature and the boundary radiation heat transfer. An inverse model and two positive models are presented. The CRI matrix is affected by the number and distribution of temperature at the measured points, and is easy to be ill-conditioned. Based on the principle of matrix singular value decomposition and matrix eigenvalue decomposition, a simple method is proposed to analyze the influence of the number and location of temperature measurement points on the results of the temperature-heat flow inverse coupling model. An effective evaluation method is presented in which the matrix condition number is expressed as a function of the matrix eigenvalue (the ratio of the maximum eigenvalue to the minimum eigenvalue), and the minimum condition number of the matrix is taken as the criterion to optimize the number and distribution of temperature measurement points. The experimental results show that the proposed temperature-heat flow inverse coupling model is feasible. Based on a two-dimensional cavity example, the temperature measurement points are optimized by using the number and position of temperature measurement points proposed in this paper to evaluate the results of the temperature-heat flow inverse coupling model. Taking the cabin environment with three passengers as an example, the temperature-heat flow inverse coupling model established in this paper and the evaluation method of temperature-heat flow inverse coupling model based on the number and position of temperature measurement points are validated. The results show that the experimental conditions of two groups of cabin test bench and MD-82 cabin are measured. The results are in good agreement with the calculated results of the temperature-heat flow coupling model, which verifies the feasibility of the temperature-heat flow coupling model in practical application. When the number of temperature measurement points is more than the number of thermal boundary to be solved, the CRJ matrix will form a rectangular matrix, and when the rectangular matrix is transformed into a square matrix, the conditional number of the original matrix will be increased. Therefore, it is not necessary to select more temperature measurement points than the number of thermal boundary to be solved. Matrix eigenvalue decomposition principle is used to optimize the temperature measurement point. Since a temperature measurement point corresponds to an eigenvalue of the CRI matrix, the temperature measurement point whose eigenvalue is far from zero should be retained. The temperature-heat flow inverse coupling model for solving the thermal boundary conditions is verified by a three-dimensional engine room example, and the reasonable cabin air supply temperature and the total floor heating power are obtained. The temperature-heat flow inverse coupling model is applied to the temperature measurement points. The evaluation method of positive coupling model results is used to optimize the temperature measurement points, and the calculation accuracy is improved.
【學(xué)位授予單位】:大連理工大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2016
【分類號】:V245.34

【相似文獻(xiàn)】

相關(guān)期刊論文 前6條

1 田君;李澤彬;;區(qū)域供熱鍋爐供熱溫度自動檢測與報(bào)警系統(tǒng)的開發(fā)與應(yīng)用[J];雞西大學(xué)學(xué)報(bào);2005年06期

2 劉華,王艷秋;散熱面積對供熱溫度的影響[J];長春師范學(xué)院學(xué)報(bào);2003年05期

3 彭連群;彭林;孫f ;;室內(nèi)供熱溫度監(jiān)測控制器的設(shè)計(jì)與應(yīng)用[J];氣象水文海洋儀器;2007年02期

4 彭林;孫f ;史紅英;;供熱溫度監(jiān)測控制系統(tǒng)的設(shè)計(jì)與應(yīng)用[J];中國高新技術(shù)企業(yè);2007年08期

5 王曉林;;以室外日平均溫度控制熱網(wǎng)供熱溫度提高熱電廠經(jīng)濟(jì)效益[J];華商;2007年17期

6 ;[J];;年期

相關(guān)重要報(bào)紙文章 前6條

1 記者 王民;“第三方”監(jiān)督溫度[N];新華每日電訊;2010年

2 記者 鄭茂;供熱溫度不達(dá)標(biāo)將按日退還熱費(fèi)[N];延邊日報(bào);2009年

3 李茗;供熱溫度不達(dá)標(biāo)核退用熱費(fèi)[N];西安日報(bào);2007年

4 本報(bào)首席記者 員娟綢;供暖新規(guī):節(jié)能更利民[N];山西經(jīng)濟(jì)日報(bào);2009年

5 記者金玲;市領(lǐng)導(dǎo)把百姓冷暖掛心上[N];撫順日報(bào);2009年

6 于伯軍;又到冬季采暖時[N];人民法院報(bào);2006年

相關(guān)博士學(xué)位論文 前1條

1 雷蕾;飛機(jī)客艙地板供熱溫度—熱流反正耦合模型及應(yīng)用[D];大連理工大學(xué);2016年

,

本文編號:2179272

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/hangkongsky/2179272.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶ee931***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com