天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 航空航天論文 >

固體燃料超燃沖壓發(fā)動機(jī)燃燒室工作過程理論與實(shí)驗(yàn)研究

發(fā)布時間:2018-08-12 10:03
【摘要】:本文在固體燃料超燃沖壓發(fā)動機(jī)燃燒室內(nèi)流場二維計(jì)算結(jié)果的基礎(chǔ)上,簡化并提出了一種準(zhǔn)一維計(jì)算方法。將常見的燃面退移速率計(jì)算方法耦合到準(zhǔn)一維方程中,該方程考慮了燃燒室面積變化、摩擦、加質(zhì)和加熱。燃面退移速率是流場內(nèi)溫度、壓力、密度和燃燒室直徑的函數(shù),而流動方程中加質(zhì)源項(xiàng)又是燃面退移速率的函數(shù),這樣就能做到燃面退移速率和內(nèi)流場參數(shù)的同步計(jì)算。將前一時刻的燃面退移速率加上燃燒室直徑得出下一時刻的燃燒室直徑,得出下一時刻燃燒室的邊界條件,從而將固體燃料燃燒室內(nèi)非定常的流動、燃燒和燃面退移問題通過每一時刻的定常計(jì)算求解。通過對比,計(jì)算結(jié)果與實(shí)驗(yàn)數(shù)據(jù)符合的較好,證明了計(jì)算模型的合理性。為固體燃料超燃沖壓發(fā)動機(jī)燃燒室的設(shè)計(jì)和分析提供了一種簡單、快速和靈活的數(shù)值方法。 爾后從固體燃料燃燒室的特點(diǎn)和超聲速燃燒流動的基本規(guī)律出發(fā),提出了固體燃料超燃沖壓發(fā)動機(jī)燃燒室設(shè)計(jì)的基本理論,這個理論包括燃燒室滿足自點(diǎn)火和火焰穩(wěn)定性條件,燃料質(zhì)量流量和空氣質(zhì)量流量滿足適當(dāng)?shù)谋壤,減小總壓損失等。并根據(jù)準(zhǔn)一維計(jì)算程序,提出一種燃燒室的準(zhǔn)一維設(shè)計(jì)方法。同時將燃燒室內(nèi)的燃燒流動進(jìn)一步簡化為等截面和變截面加熱管流,提出了一種更加簡便快速的燃燒室工程設(shè)計(jì)方法。 設(shè)計(jì)并制造了一個小型直連式試車臺,核心部件空氣加熱器以甲烷為原料,具有啟動迅速、工作穩(wěn)定、污染物少等優(yōu)點(diǎn)。通過實(shí)驗(yàn)驗(yàn)證了燃燒室自點(diǎn)火和火焰穩(wěn)定性條件,獲得了燃燒室不同時刻的燃面退移速率和平均燃面退移速率,發(fā)現(xiàn)燃面退移速率最大值出現(xiàn)在凹腔和等直段的連接部以及等直段和擴(kuò)張段的連接部。然后將實(shí)驗(yàn)和數(shù)值計(jì)算相結(jié)合討論了燃燒室工作過程中燃燒室結(jié)構(gòu)和其他相關(guān)參數(shù)的變化規(guī)律。發(fā)現(xiàn)在燃燒室在工作過程中,凹腔慢慢變大、變深,但凹腔的主體形狀不會發(fā)生較大的改變,能夠一直起到穩(wěn)定火焰的作用。等直段后端慢慢消失和擴(kuò)張段連為一體,擴(kuò)張段擴(kuò)張比逐漸減小。凹腔內(nèi)部的燃面退移速率較小,且沿著軸線逐漸增大。在等直段和擴(kuò)張段連接處尖角消失之前,燃面退移速率在等直段內(nèi)出現(xiàn)先減小后增大,尖角消失之后,燃面退移速率沿軸線逐漸減小。擴(kuò)張段內(nèi)燃面退移速率沿軸線逐漸減小。不同時刻,同一位置的燃面退移速率隨著燃燒室的工作過程逐漸減小。但由于燃面的增大,燃空比在燃燒工作過程中相對穩(wěn)定。由于燃燒室內(nèi)腔的增大,內(nèi)流場馬赫數(shù)在燃燒室工作過程中逐漸增大,導(dǎo)致氣流的總壓損失增大,做功能力下降,發(fā)動機(jī)的推力會下降。 研究了燃燒室入口和進(jìn)氣道出口氣流參數(shù)的匹配問題。在飛行條件一定的前提下,提高燃燒室入口總壓,提高燃燒室入口總溫,降低燃燒室入口馬赫數(shù),能增大燃面退移速率從而減小燃燒室的長度,同時能提高發(fā)動機(jī)的比推力。通過敏感性分析發(fā)現(xiàn),總溫的燃燒室的性能影響最大。探討了凹腔尺寸對燃燒室性能的影響。在燃燒效率一定的條件下,增大凹腔出口和燃燒室入口的相對直徑,會增大燃燒室內(nèi)流場馬赫數(shù),增大總壓損失,減小燃面退移速率,增大燃燒室的長度,減小發(fā)動機(jī)的比推力。然而增大凹腔的深度和長度并不會對燃燒室的性能產(chǎn)生較大的影響。最后研究了燃燒室在非設(shè)計(jì)狀態(tài)下的性能變化規(guī)律。對于設(shè)計(jì)定型的燃燒室,隨著飛行馬赫數(shù)的增大,發(fā)動機(jī)的比推力先增大后減小,在設(shè)計(jì)點(diǎn)處最大,,比沖逐漸減;隨著飛行高度的增大,發(fā)動機(jī)的比推力也先增大后減小,在設(shè)計(jì)點(diǎn)處最大,比沖小幅增大。
[Abstract]:On the basis of the two-dimensional calculation results of the flow field in a solid fuel scramjet combustor, a quasi-one-dimensional calculation method is simplified and proposed in this paper. The common methods for calculating the burning surface regression rate are coupled into a quasi-one-dimensional equation, which takes into account the variation of the combustor area, friction, mass addition and heating. The burning surface regression rate is the flow field. The internal temperature, pressure, density and chamber diameter are functions of the burning surface regression rate in the flow equation, so that the burning surface regression rate and the internal flow field parameters can be calculated simultaneously. The boundary conditions of the combustor can be used to solve the unsteady flow, combustion and surface regression problems in the solid fuel combustor through the steady calculation at each moment. It provides a simple, fast and flexible numerical method.
Then, based on the characteristics of solid fuel combustor and the basic law of supersonic combustion flow, a basic theory for the design of solid fuel scramjet combustor is proposed. The theory includes that the combustor satisfies the conditions of self-ignition and flame stability, the mass flow rate of fuel and the mass flow rate of air satisfies an appropriate proportion, and the total pressure is reduced. According to the quasi-one-dimensional calculation program, a quasi-one-dimensional design method of combustion chamber is proposed, and the combustion flow in combustion chamber is further simplified as a heating pipe flow with constant cross-section and variable cross-section.
A small direct-connected test rig was designed and manufactured. The core component of the air heater is methane. It has the advantages of rapid start-up, stable operation and less pollutants. The maximum rate of burning surface regression occurs at the joint of the cavity and the equal straight section and the connection of the equal straight section and the expansion section. The back end of the straight section disappears slowly and the expansion section is connected with each other, and the expansion ratio of the expansion section decreases gradually. After the tip angle disappears, the burning surface regression rate decreases along the axis. At different times, the burning surface regression rate at the same position decreases with the working process of the combustor. With the increase of chamber, the Mach number of internal flow field increases gradually during the combustion chamber operation, which leads to the increase of total pressure loss of air flow and the decrease of engine thrust.
The matching problem of air flow parameters at the inlet and inlet outlet of a combustor is studied. Under certain flight conditions, the total pressure at the inlet of the combustor is increased, the total temperature at the inlet of the combustor is increased, the Mach number at the inlet of the combustor is decreased, the burning surface retreat rate is increased, the length of the combustor is reduced, and the specific thrust of the engine is increased. It is found that the total temperature has the greatest influence on the performance of the combustor.The effect of cavity size on the performance of the combustor is discussed.Under certain combustion efficiency conditions,increasing the relative diameter of the cavity outlet and the combustor inlet will increase the Mach number of the flow field in the combustor,increase the total pressure loss,reduce the rate of burning surface retreat and increase the length of the combustor. However, increasing the depth and length of the cavity does not affect the performance of the combustor. Finally, the performance variation of the combustor in the off-design state is studied. With the increase of flight altitude, the specific thrust of the engine increases first and then decreases, and the specific impulse increases slightly at the design point.
【學(xué)位授予單位】:北京理工大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2015
【分類號】:V435

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 楊明;孫波;;固體燃料超燃沖壓發(fā)動機(jī)燃燒室的數(shù)值仿真[J];兵工自動化;2012年01期

2 蔡毅;邢巖;胡丹;;敏感性分析綜述[J];北京師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2008年01期

3 曾慧;白菡塵;朱濤;;X-51A超燃沖壓發(fā)動機(jī)及飛行驗(yàn)證計(jì)劃[J];導(dǎo)彈與航天運(yùn)載技術(shù);2010年01期

4 余勇,丁猛,劉衛(wèi)東,王振國;面向超音速燃燒室方案設(shè)計(jì)的一維流場分析模型[J];彈箭與制導(dǎo)學(xué)報(bào);2004年03期

5 解發(fā)瑜,李剛,徐忠昌;高超聲速飛行器概念及發(fā)展動態(tài)[J];飛航導(dǎo)彈;2004年05期

6 陳延輝 ,夏慧;超燃沖壓發(fā)動機(jī)在RJTF試驗(yàn)的推力性能真實(shí)程度[J];飛航導(dǎo)彈;2004年10期

7 陳英碩;葉蕾;蘇鑫鑫;;國外吸氣式高超聲速飛行器發(fā)展現(xiàn)狀[J];飛航導(dǎo)彈;2008年12期

8 楊向明;劉偉凱;陳林泉;鄭凱斌;;固體燃料超燃沖壓發(fā)動機(jī)原理性試驗(yàn)研究[J];固體火箭技術(shù);2012年03期

9 劉偉凱;陳林泉;楊向明;;固體燃料超燃沖壓發(fā)動機(jī)燃燒室摻混燃燒數(shù)值研究[J];固體火箭技術(shù);2012年04期

10 陶歡;魏志軍;武志文;王寧飛;;固體燃料超燃沖壓發(fā)動機(jī)燃燒室流動與摻混過程研究[J];飛航導(dǎo)彈;2012年08期

相關(guān)博士學(xué)位論文 前5條

1 夏強(qiáng);固體燃料沖壓發(fā)動機(jī)工作過程研究[D];南京理工大學(xué);2011年

2 吳先宇;超燃沖壓發(fā)動機(jī)一體化流道設(shè)計(jì)優(yōu)化研究[D];國防科學(xué)技術(shù)大學(xué);2007年

3 金亮;高超聲速飛行器機(jī)體/發(fā)動機(jī)一體化構(gòu)型設(shè)計(jì)與性能研究[D];國防科學(xué)技術(shù)大學(xué);2008年

4 王翼;高超聲速進(jìn)氣道啟動問題研究[D];國防科學(xué)技術(shù)大學(xué);2008年

5 劉凱禮;高超聲速進(jìn)氣道動/穩(wěn)態(tài)攻角特性研究[D];南京航空航天大學(xué);2012年



本文編號:2178720

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/hangkongsky/2178720.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶d15a6***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com