飛機(jī)射頻隱身性能評估指標(biāo)研究與軟件實現(xiàn)
本文關(guān)鍵詞:飛機(jī)射頻隱身性能評估指標(biāo)研究與軟件實現(xiàn) 出處:《南京航空航天大學(xué)》2016年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 射頻隱身 表征參量 條件信息熵 截獲概率 軟件仿真 識別容量
【摘要】:隨著無源探測技術(shù)的發(fā)展,飛機(jī)隱身不再局限于雷達(dá)隱身以及紅外隱身等。無源探測系統(tǒng)作用距離遠(yuǎn)、無射頻輻射、隱蔽性好等特點使得飛機(jī)射頻隱身技術(shù)的研究越來越具有實用價值。如何實現(xiàn)飛機(jī)射頻隱身也是世界軍事強(qiáng)國研究的重點與難點。針對飛機(jī)射頻隱身性能評估及其軟件實現(xiàn),本文主要的研究內(nèi)容與結(jié)果如下:(1)分析了飛機(jī)射頻目標(biāo)特征參量與射頻隱身性能參量的表征方法。針對射頻目標(biāo)特征參量的特點,分析了射頻輻射強(qiáng)度、信號脈間以及脈內(nèi)不確定性等射頻目標(biāo)特征參量的表征方法;給出了用條件熵表征信號脈間不確定性的方法,相對于射頻不確定性熵,條件熵更加全面的衡量了機(jī)載輻射脈沖信號脈間參數(shù)(載頻、脈寬、脈沖重頻)捷變引起的脈間不確定性;針對射頻隱身性能參量的特點,分析了截獲距離、截獲因子、截獲球半徑以及截獲概率等射頻隱身性能表征參量。同時從頻域、時域、能量域和空域截獲條件出發(fā),重點分析了影響截獲概率的因素。為射頻隱身評估軟件系統(tǒng)的實現(xiàn)奠定了基礎(chǔ)。(2)研究了復(fù)雜條件下的射頻隱身性能表征方法。針對電子對抗中外部噪聲干擾問題,分析了外部噪聲干擾對截獲距離、截獲因子等的影響,并通過仿真給出了一種通過干擾無源探測系統(tǒng)來提高射頻隱身效果的方法;針對空對地/海面對抗場景,研究了影響截獲概率的重要因素:波束覆蓋面積;針對空對空對抗場景,給出了飛機(jī)截獲概率的表征方法:聯(lián)合截獲概率。仿真結(jié)果表明截獲概率隨著輻射源的掠射角增大或者主瓣波束寬度增大而增大。(3)設(shè)計并實現(xiàn)了飛機(jī)射頻隱身性能評估軟件系統(tǒng)。首先,進(jìn)行了軟件系統(tǒng)的總體設(shè)計以及各子模塊的設(shè)計。針對截獲距離與截獲球半徑的計算復(fù)雜度,分別給出了牛頓迭代法以及歸一化軟件實現(xiàn)方法,在滿足計算精度的前提下減少了計算時間,提高了軟件系統(tǒng)的實時性。此外,進(jìn)行了系統(tǒng)的輸入輸出、綜合顯示等各項功能測試。測試結(jié)果表明,仿真系統(tǒng)運行可靠,仿真結(jié)果正確。仿真系統(tǒng)具有良好的擴(kuò)展性,可以滿足系統(tǒng)未來的半實物仿真研究的需要。(4)給出了機(jī)載雷達(dá)抗分選識別性能表征參量:識別容量。建立了基于無源探測系統(tǒng)的識別容量基本模型,研究了信噪比以及待識別目標(biāo)特征維數(shù)對識別容量的影響;分析了有、無脈沖遺漏兩種情形下的識別容量,并通過與最小誤判準(zhǔn)則下的正確識別概率對比驗證了識別容量表征機(jī)載雷達(dá)抗分選識別性能的有效性。研究表明,機(jī)載雷達(dá)識別容量越大,抗分選識別性能越差;基于識別容量,給出了跳頻信號參數(shù)設(shè)計的方法。通過數(shù)值分析驗證了跳頻信號參數(shù)設(shè)計的正確性與有效性。
[Abstract]:With the development of passive detection technology, aircraft stealth is no longer limited to radar stealth and infrared stealth. The characteristics of good concealment make the research of aircraft radio frequency stealth technology more and more practical value. How to realize the aircraft radio frequency stealth is also the focus and difficulty of the research of the world military power. Its software implementation. The main contents and results of this paper are as follows: (1) the characterization methods of the radio frequency target characteristic parameters and the radio frequency stealth performance parameters are analyzed. According to the characteristics of the radio frequency target characteristic parameters, the radio frequency radiation intensity is analyzed. The representation method of radio frequency target characteristic parameters, such as inter-pulse and intra-pulse uncertainty, etc. In this paper, a method to characterize the uncertainty between signals with conditional entropy is presented. Compared with the entropy of radio frequency uncertainty, the conditional entropy measures the parameters (carrier frequency and pulse width) of airborne radiating pulse signal more comprehensively. Pulse repetition) interpulse uncertainty caused by agility; According to the characteristics of RF stealth performance parameters, the parameters of RF stealthy performance, such as intercept distance, interception factor, intercept radius and probability of interception, are analyzed. At the same time, in frequency domain, time domain. Energy domain and airspace interception conditions. The factors influencing the probability of interception are analyzed emphatically, which lays a foundation for the realization of RF stealth evaluation software system. The methods of characterization of RF stealth performance under complex conditions are studied, and the external noise interference in electronic countermeasures is studied. The influence of external noise interference on interception distance and interception factor is analyzed, and a method to improve radio frequency stealth effect by jamming passive detection system is given by simulation. For the air-to-surface / sea surface confrontation scenario, the important factors affecting the probability of interception are studied: the coverage area of the beam; For air-to-air combat scenarios. The joint interception probability is presented. The simulation results show that the interception probability increases with the increase of the grazing angle of the emitter or the beam width of the main lobe. Design and implementation of aircraft RF stealth performance evaluation software system. First. The overall design of the software system and the design of each sub-module, aiming at the computational complexity of the intercept distance and the radius of the intercepting sphere, the Newton iteration method and the normalized software implementation method are given respectively. Under the premise of satisfying the calculation accuracy, the calculation time is reduced, and the real-time performance of the software system is improved. In addition, the input and output of the system and the comprehensive display are tested. The test results show that. The simulation system runs reliably and the simulation results are correct. The simulation system has good expansibility. It can meet the needs of the future hardware-in-the-loop simulation of the system. (4) the identification capacity of airborne radar anti-sorting recognition performance is presented, and the basic model of recognition capacity based on passive detection system is established. The influence of signal-to-noise ratio (SNR) and feature dimension of target to be identified on the recognition capacity is studied. The recognition capacity of the two cases without pulse omission is analyzed. By comparing with the correct recognition probability under the minimum error criterion, the effectiveness of the recognition capacity to characterize the anti-sorting performance of airborne radar is verified. The research shows that the larger the recognition capacity of airborne radar is, the greater the recognition capacity is. The worse the performance of anti-sorting identification; Based on the identification capacity, the design method of frequency hopping signal parameters is presented, and the correctness and validity of the frequency hopping signal parameter design are verified by numerical analysis.
【學(xué)位授予單位】:南京航空航天大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2016
【分類號】:V218
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 焦思涵;;分布式仿真技術(shù)研究[J];中國高新技術(shù)企業(yè);2015年18期
2 Fei Wang;Mathini Sellathurai;Weigang Liu;Jiangjiang Zhou;;Security information factor based airborne radar RF stealth[J];Journal of Systems Engineering and Electronics;2015年02期
3 肖鵬;吳宏超;肖衛(wèi)華;王美玲;;功率管理對LPI雷達(dá)低截獲性的影響[J];雷達(dá)與對抗;2014年04期
4 趙東濤;王海風(fēng);王浩;;射頻隱身性能測試評估技術(shù)研究[J];科技創(chuàng)新與應(yīng)用;2014年18期
5 趙宜楠;亓玉佩;趙占鋒;周志權(quán);;分布式MIMO雷達(dá)的低截獲特性分析[J];哈爾濱工業(yè)大學(xué)學(xué)報;2014年01期
6 廖雯雯;程婷;何子述;;MIMO雷達(dá)射頻隱身性能優(yōu)化的目標(biāo)跟蹤算法[J];航空學(xué)報;2014年04期
7 劉宏強(qiáng);魏賢智;黃俊;廖俊;;雷達(dá)單目標(biāo)跟蹤射頻隱身控制策略[J];空軍工程大學(xué)學(xué)報(自然科學(xué)版);2013年04期
8 王琳;;飛行器射頻隱身技術(shù)及發(fā)展思路[J];電訊技術(shù);2013年08期
9 劉雙青;蔡新舉;占超;;雷達(dá)抗干擾技術(shù)現(xiàn)狀及發(fā)展趨勢[J];艦船電子工程;2013年08期
10 張國利;畢大平;李磊;;噪聲干擾對雷抗偵察系統(tǒng)截獲能力影響分析[J];航天電子對抗;2013年03期
相關(guān)博士學(xué)位論文 前2條
1 陳利虎;跳頻信號的偵察技術(shù)研究[D];國防科學(xué)技術(shù)大學(xué);2009年
2 張國柱;雷達(dá)輻射源識別技術(shù)研究[D];國防科學(xué)技術(shù)大學(xué);2005年
相關(guān)碩士學(xué)位論文 前5條
1 閆慧;解非線性方程的迭代算法研究[D];合肥工業(yè)大學(xué);2014年
2 陳大釗;信道化數(shù)字接收機(jī)技術(shù)的研究與實現(xiàn)[D];電子科技大學(xué);2013年
3 李洪娥;基于RTI的協(xié)同仿真系統(tǒng)交互方法研究[D];西南交通大學(xué);2013年
4 詹露華;低截獲概率雷達(dá)波形設(shè)計及性能分析[D];南京理工大學(xué);2013年
5 謝昶;數(shù)字信道化接收機(jī)研究[D];南京理工大學(xué);2010年
,本文編號:1417991
本文鏈接:http://sikaile.net/kejilunwen/hangkongsky/1417991.html