南京緯三路盾構(gòu)法隧道施工引起地表沉降研究
發(fā)布時(shí)間:2021-02-14 21:36
交通擁擠和環(huán)境因素使得對(duì)城市地下空間的利用有更大的需求,但城市隧道的開(kāi)挖引起的地表沉降會(huì)對(duì)現(xiàn)有結(jié)構(gòu)造成負(fù)面影響,因此,隧道開(kāi)挖造成的地表沉降對(duì)隧道施工特別是在城市地區(qū)十分重要。隧道地表沉降是由應(yīng)力衰減引和開(kāi)挖支撐的移動(dòng)引起的,趨勢(shì)取決于幾個(gè)因素,如隧道的幾何形狀,地面控制條件等等。在工程實(shí)踐中往往使用不同的設(shè)計(jì)方法估計(jì)地表沉降變化,從簡(jiǎn)單的經(jīng)驗(yàn)分析到有限單元法求得解析解。根據(jù)不同的方法,應(yīng)用于隧道開(kāi)挖和支撐模型的程序也不盡相同;谏鲜鰡(wèn)題,完成了本文”盾構(gòu)法施工引起地表沉降的研究”。首先,根據(jù)經(jīng)驗(yàn)解、解析解和數(shù)值解對(duì)隧道地表沉降預(yù)測(cè)進(jìn)行總結(jié)。隨后分析了隧道開(kāi)挖引起的地表沉降特征、引起施工沉降的原因、開(kāi)挖面的側(cè)向和縱向沉降及開(kāi)挖面的穩(wěn)定性。其次,本文介紹了南京緯三路過(guò)江隧道工程在保健村的工程的工程背景和規(guī)模以及施工的的自然條件,對(duì)南京緯三路過(guò)江隧道項(xiàng)目施工階段收集的數(shù)據(jù)進(jìn)行了深入處理和分析。之后采用數(shù)值模擬分析有限元法(FEM)利用數(shù)值模擬軟件ABAQUS進(jìn)行二維和三維的有限元分析。有限元模擬過(guò)程中驗(yàn)證了合適的開(kāi)挖模擬和支撐順序,特別是恰當(dāng)?shù)倪吔鐥l件對(duì)結(jié)果的重要性。同時(shí)對(duì)不同埋深、不同...
【文章來(lái)源】:哈爾濱工業(yè)大學(xué)黑龍江省 211工程院校 985工程院校
【文章頁(yè)數(shù)】:130 頁(yè)
【學(xué)位級(jí)別】:碩士
【文章目錄】:
摘要
Abstract
List of symbols
Chapter 1 Introduction
1.1 The research background and significance
1.2 The prediction of ground movements due to tunneling
1.2.1 Empirical methods
1.2.2 Analytical solutions
1.2.3 Numerical analyses methods
1.2.3.1 Two-dimensional Finite Elements Models (2D-FEM) analyses
1.2.3.2 Three-dimensional Finite Elements Models (3D-FEM) analyses
1.3 The main research contents of this thesis
Chapter 2 Analysis of ground settlement and stability of excavation face
2.1 Introduction
2.2 Shield construction principle
2.2.1 Development of Shield Method
2.2.2 Principle of Shield Method
2.3 Characteristics of ground settlement caused by shield tunneling
2.3.1 The ground surface settlement before shield arrival
2.3.2 Ground settlement due to shield construction
2.3.3 Post consolidation settlement
2.4 Causes for construction induced settlements
2.4.1 Case of shield-driven tunnels
2.4.1.1 Settlements ahead and above the face
2.4.1.2 Settlements along the shield
2.4.1.3 Settlements at the shield tail
2.4.1.4 Settlements due to lining deformation
2.4.2 Effect of groundwater
2.5 Analysis of lateral and longitudinal ground surface settlement
2.5.1 Analysis of transversal ground surface settlement
2.5.1.1 Analysis of vertical settlement in the transversal direction
2.5.1.2 Analysis of Horizontal displacement in the transversal direction
2.5.2 Analysis of longitudinal ground surface settlement
2.5.2.1 Analysis of vertical settlement in the longitudinal direction
2.5.2.2 Analysis of horizontal displacement in the longitudinal direction
2.6 Subsurface movement
2.7 stability of excavation face
2.7.1 Limiting Equilibrium Methods (LEM)
2.7.1.1 Method of Broms and Bennemark (1967)
2.7.1.2 Method of Krause (1987)
2.7.1.3 Method of Anagnostou and Kovari (1996)
2.7.2 Limiting Analysis Methods (LAM)
2.7.2.1 Method of Davis et al. (1980)
2.7.2.2 Method of Leca and Dormieux (1990)
2.8 Brief Summary
Chapter 3 Numerical modelling on ground settlement induced by shield tunnel method
3.1 Introduction
3.2 Presentation of Nanjing three Yangtze River tunnel Project
3.2.1 Project overview
3.2.2 Geological Situation
3.2.3 Weather conditions
3.2.4 Hydrogeological condition
3.3 Computational models
3.4 Finite Element Modeling
3.4.1 Ground modeling
3.4.2 Tunnel lining modeling
3.4.3 Grout modeling
3.4.4 Shield machine modeling
3.5 Mesh and Elements types
3.6 Boundary conditions and loading
3.6.1 Boundary conditions
3.6.2 Loading
3.7 Numerical simulation method
3.8 Brief Summary
Chapter 4 Simulation results and field measurement data
4.1 Introduction
4.2 Field measurement data
4.2.1 Monitoring program
4.2.2 Field result analysis
4.2.2.1 Longitudinal settlement analysis
4.2.2.2 Lateral settlement analysis
4.2.3 Comparison of field measurement and empirical prediction
4.3 Simulation results and analysis
4.3.1 Analysis of ground settlement caused by shield construction
4.3.1.1 Vertical settlement in the transversal direction
4.3.1.2 Horizontal displacement in the transversal direction
4.3.1.3 Vertical settlement in the longitudinal direction
4.3.2 Comparison of numerical simulation and empirical prediction
4.3.3 Analysis of Ground Settlement under different tunnel buried depth
4.3.3.1 Vertical settlement under different tunnel buried depths
4.3.3.2 Horizontal displacement under different tunnel buried depths
4.3.3.3 Comparison of ground settlement between the various cases of tunnelburied depth
4.3.4 Analysis of the effect of shield tail grouting on ground settlement
4.3.4.1 Vertical settlement for each Grout Condition
4.3.4.2 Horizontal displacement for each Grout Condition
4.3.4.3 Comparison of ground settlement between the various cases of Groutcondition
4.4 Comparison of numerical simulation and field measurement
4.5 Brief summary
Conclusions
結(jié)論
References
Acknowledgement
Resume
【參考文獻(xiàn)】:
期刊論文
[1]大直徑泥水盾構(gòu)下穿民房建筑群沉降分析及控制[J]. 張亞洲,王善高,閔凡路. 防災(zāi)減災(zāi)工程學(xué)報(bào). 2016(06)
[2]南京緯三路過(guò)江盾構(gòu)隧道工程主要地質(zhì)問(wèn)題及其對(duì)策[J]. 石新棟,吳全立. 隧道建設(shè). 2011(06)
[3]南京市緯三路長(zhǎng)江隧道工程設(shè)計(jì)[J]. 喬春江,郭小紅,柯小華. 武漢勘察設(shè)計(jì). 2011(06)
本文編號(hào):3033901
【文章來(lái)源】:哈爾濱工業(yè)大學(xué)黑龍江省 211工程院校 985工程院校
【文章頁(yè)數(shù)】:130 頁(yè)
【學(xué)位級(jí)別】:碩士
【文章目錄】:
摘要
Abstract
List of symbols
Chapter 1 Introduction
1.1 The research background and significance
1.2 The prediction of ground movements due to tunneling
1.2.1 Empirical methods
1.2.2 Analytical solutions
1.2.3 Numerical analyses methods
1.2.3.1 Two-dimensional Finite Elements Models (2D-FEM) analyses
1.2.3.2 Three-dimensional Finite Elements Models (3D-FEM) analyses
1.3 The main research contents of this thesis
Chapter 2 Analysis of ground settlement and stability of excavation face
2.1 Introduction
2.2 Shield construction principle
2.2.1 Development of Shield Method
2.2.2 Principle of Shield Method
2.3 Characteristics of ground settlement caused by shield tunneling
2.3.1 The ground surface settlement before shield arrival
2.3.2 Ground settlement due to shield construction
2.3.3 Post consolidation settlement
2.4 Causes for construction induced settlements
2.4.1 Case of shield-driven tunnels
2.4.1.1 Settlements ahead and above the face
2.4.1.2 Settlements along the shield
2.4.1.3 Settlements at the shield tail
2.4.1.4 Settlements due to lining deformation
2.4.2 Effect of groundwater
2.5 Analysis of lateral and longitudinal ground surface settlement
2.5.1 Analysis of transversal ground surface settlement
2.5.1.1 Analysis of vertical settlement in the transversal direction
2.5.1.2 Analysis of Horizontal displacement in the transversal direction
2.5.2 Analysis of longitudinal ground surface settlement
2.5.2.1 Analysis of vertical settlement in the longitudinal direction
2.5.2.2 Analysis of horizontal displacement in the longitudinal direction
2.6 Subsurface movement
2.7 stability of excavation face
2.7.1 Limiting Equilibrium Methods (LEM)
2.7.1.1 Method of Broms and Bennemark (1967)
2.7.1.2 Method of Krause (1987)
2.7.1.3 Method of Anagnostou and Kovari (1996)
2.7.2 Limiting Analysis Methods (LAM)
2.7.2.1 Method of Davis et al. (1980)
2.7.2.2 Method of Leca and Dormieux (1990)
2.8 Brief Summary
Chapter 3 Numerical modelling on ground settlement induced by shield tunnel method
3.1 Introduction
3.2 Presentation of Nanjing three Yangtze River tunnel Project
3.2.1 Project overview
3.2.2 Geological Situation
3.2.3 Weather conditions
3.2.4 Hydrogeological condition
3.3 Computational models
3.4 Finite Element Modeling
3.4.1 Ground modeling
3.4.2 Tunnel lining modeling
3.4.3 Grout modeling
3.4.4 Shield machine modeling
3.5 Mesh and Elements types
3.6 Boundary conditions and loading
3.6.1 Boundary conditions
3.6.2 Loading
3.7 Numerical simulation method
3.8 Brief Summary
Chapter 4 Simulation results and field measurement data
4.1 Introduction
4.2 Field measurement data
4.2.1 Monitoring program
4.2.2 Field result analysis
4.2.2.1 Longitudinal settlement analysis
4.2.2.2 Lateral settlement analysis
4.2.3 Comparison of field measurement and empirical prediction
4.3 Simulation results and analysis
4.3.1 Analysis of ground settlement caused by shield construction
4.3.1.1 Vertical settlement in the transversal direction
4.3.1.2 Horizontal displacement in the transversal direction
4.3.1.3 Vertical settlement in the longitudinal direction
4.3.2 Comparison of numerical simulation and empirical prediction
4.3.3 Analysis of Ground Settlement under different tunnel buried depth
4.3.3.1 Vertical settlement under different tunnel buried depths
4.3.3.2 Horizontal displacement under different tunnel buried depths
4.3.3.3 Comparison of ground settlement between the various cases of tunnelburied depth
4.3.4 Analysis of the effect of shield tail grouting on ground settlement
4.3.4.1 Vertical settlement for each Grout Condition
4.3.4.2 Horizontal displacement for each Grout Condition
4.3.4.3 Comparison of ground settlement between the various cases of Groutcondition
4.4 Comparison of numerical simulation and field measurement
4.5 Brief summary
Conclusions
結(jié)論
References
Acknowledgement
Resume
【參考文獻(xiàn)】:
期刊論文
[1]大直徑泥水盾構(gòu)下穿民房建筑群沉降分析及控制[J]. 張亞洲,王善高,閔凡路. 防災(zāi)減災(zāi)工程學(xué)報(bào). 2016(06)
[2]南京緯三路過(guò)江盾構(gòu)隧道工程主要地質(zhì)問(wèn)題及其對(duì)策[J]. 石新棟,吳全立. 隧道建設(shè). 2011(06)
[3]南京市緯三路長(zhǎng)江隧道工程設(shè)計(jì)[J]. 喬春江,郭小紅,柯小華. 武漢勘察設(shè)計(jì). 2011(06)
本文編號(hào):3033901
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/3033901.html
最近更新
教材專(zhuān)著