異構(gòu)車聯(lián)網(wǎng)通信:基于VANET-DSRC和VANET-5G自適應(yīng)數(shù)據(jù)速率方法
發(fā)布時間:2020-12-30 06:15
近年來,車聯(lián)網(wǎng)通信這一重大研究已成為智能交通系統(tǒng)(ITS)的重要組成部分。其中,車載自組網(wǎng)(VANET,Vehicular ad-hoc networks)作為新興的無線adhoc網(wǎng)絡(luò),在提高交通安全性和舒適度上有著重大的意義。但是在VANET中,節(jié)點自身的移動和數(shù)量變化成為了一個具有挑戰(zhàn)性的問題。除移動性外,如何保障信息傳播的安全性和高效性也是其中的重要課題。這些問題無法解決將導(dǎo)致無線網(wǎng)絡(luò)性能急劇下降。因此,近期提出的將蜂窩網(wǎng)絡(luò)與專用短程通信技術(shù)(DSRC,Dedicated Short Range Communications)集成的異構(gòu)車載網(wǎng)絡(luò)引起了極大的關(guān)注。這種車載自組網(wǎng)(VANET)的蜂窩集成具有幾個潛在的好處,例如,高數(shù)據(jù)傳輸速率,更大的通信范圍和更低的延遲。除此以外,其還可以作為自動駕駛汽車的重要組成部分。但與此同時,這種網(wǎng)絡(luò)在定義相關(guān)的方案和協(xié)議(如速率適配機制)方面仍存在若干問題。而各種VANET應(yīng)用程序(如流量控制程序,管理程序和多媒體交付程序)的整體性能基于這些網(wǎng)絡(luò)可提供的成功率和網(wǎng)絡(luò)吞吐量。對此,IEEE 802.11p中包含了支持車載安全應(yīng)用的關(guān)鍵技術(shù)。其中...
【文章來源】:上海交通大學(xué)上海市 211工程院校 985工程院校 教育部直屬院校
【文章頁數(shù)】:121 頁
【學(xué)位級別】:博士
【文章目錄】:
Abstract
摘要
List of Acronyms and Abbreviations
1.CHAPTER 1:INTRODUCTION
1.1 Background and Motivation
1.2 Problem Statement and Research Objectives
1.3 Main Contributions
1.4 Thesis Organization
2.CHAPTER 2:VEHICULAR AD HOC NETWORKS OVERVIEW
2.1 Introduction
2.2 VANET Architecture and Background
2.2.1 VANET Communication System Architecture
2.2.1.1 In-Vehicle Domain
2.2.1.2 Ad-hoc Domain
2.2.1.3 Infrastructural Domain
2.2.2 VANET Components
2.2.2.1 On-Board Units(OBUs)
2.2.2.2 Application Units(AUs)
2.2.2.3 Road-Side Units(RSUs)
2.2.3 Vehicular Communication Categories
2.2.3.1 Vehicle-to-Vehicle(V2V)Communication
2.2.3.2 Vehicle-to-Infrastructure(V2I)Communication
2.2.3.3 Hybrid Architecture(V2X)
2.3 Standards for Wireless Access in VANET
2.3.1 Dedicated Short-Range Communication(DSRC)
2.3.2 IEEE1609-Standards for Wireless Access in Vehicular Environments(WAVE)
2.4 VANET Characteristics
2.5 Technical Challenges
2.6 VANET Applications and Services
2.6.1 Safety Applications
2.6.2 Traffic Monitoring and Management Applications
2.6.3 Comfort or Infotainment Applications
2.7 Summary
3.CHAPTER 3:HETEROGENEOUS VEHICULAR COMMUNICATIONS:A COMPREHENSIVE STUDY
3.1 Introduction
3.2 Heterogeneous Vehicular Communication Scenarios
3.2.1 V2V Communication
3.2.1.1 DSRC
3.2.1.2 LTE D2D
3.2.2 V2I Communication
3.2.2.1 DSRC
3.2.2.2 Cellular networks
3.3 VANET Integration with Various Heterogeneous Wireless Networks
3.3.1 Vertical Handover
3.3.2 Data Dissemination and Collection
3.3.2.1 Data dissemination
3.3.2.2 Data collection
3.3.3 Gateway Selection
3.3.4 Network Selection with Effective Quality of Service(QoS)
3.4 Beamforming,AoA and AoD for Millimeter Wave 5G and Heterogeneous Vehicular Networks)
3.4.1 Introduction
3.4.2 MmWave5G
3.4.3 Hybrid Precoding and Beamforming for mmWave5G
3.4.3.1 Definition
3.4.3.2 Hybrid digital/analog precoding/combining system model
3.4.3.3 NYUSIM Simulator
3.4.3.4 Summary
3.5 Autonomous Cars
3.5.1 Main Obstacles
3.5.2 Google Self-Driving Car
3.5.3 Open Opinion Surveys
3.6 Summary
4.CHAPTER 4:DATA RATE ADAPTATION ALGORITHMS IN WIRELESS NETWORKS
4.1 Introduction
4.2 Definition of Rate Adaptation Algorithms
4.3 Rate Adaptation Algorithms Challenges
4.4 Rate Adaptation Techniques
4.5 Rate Adaptation Mechanisms Classification
4.5.1 Classification based on channel condition information
4.5.1.1 SNR-based
4.5.1.2 SNR-based Packet statistics-based
4.5.2 Classification based on rate updating period
4.5.2.1 Frame-based
4.5.2.2 Window-based
4.5.3 Rate adaptation algorithms with and without loss differentiation
4.5.3.1 Algorithms without loss differentiation
a-Frame loss approach
b-SNR approach
4.5.3.2 Algorithms with loss differentiation
4.6 Multiband Atheros Driver for Wireless Fidelity(MadWiFi)
4.7 Multi-Retry Chain(MRR)
4.7.1 MRR Definition
4.7.2 Retry Strategies
4.8 VANET Simulation
4.9 Summary
5.CHAPTER5:TESTED ALGORITHMS IN HETEROGENEOUS VEHICULAR NETWORKS
5.1 Introduction
5.2 Adaptive Multi Rate Retry(AMRR)
5.3 Onoe Algorithm
5.4 Automatic Rate Fall back(ARF)
5.5 Adaptive Auto Rate Fallback(AARF)
5.6 Adaptive Auto Rate Fallback-Collision Detection(AARF-CD)
5.7 Minstrel Algorithm
5.8 Ideal Algorithm
5.9 Collision-Aware Rate Adaptation(CARA)
5.10 Summary
6.CHAPTER6:PERFORMANCE EVALUATION OF RATE ADAPTATION ALGORITHMS IN THE HETEROGENEOUS VEHICULAR ENVIRONMENTS
6.1 Introduction
6.2 Simulated Scenarios and Simulation Results
6.2.1 Experiment 1
6.2.2 Experiment 2
6.3 Performance Evaluation and Discussion
6.3.1 Experiment 1
6.3.1.1 Low Density Scenarios(10 and 20 vehicles)
6.3.1.2 High Density Scenarios(50 and 100 vehicles)
6.3.2 Experiment 2
6.3.2.1 Low speed scenario(10 m/s)
6.3.2.2 High speed scenario(30 m/s)
6.4 Summary
7.CHAPTER7:DZ-MINSTREL:AN EFFECTIVE RATE ADAPTATION APPROACH FOR VEHICULAR ENVIRONMENTS
7.1 Introduction
7.2 Drive Z-Minstrel(DZ-Minstrel)Rate Adaptation Algorithm
7.2.1 Retry Chain
7.2.2 Rate Selection
7.2.3 Statistics Calculation
7.3 Simulated Scenarios and Simulation Results
7.4 Performance Evaluation and Discussion
7.4.1 Low Density Scenarios(8 and25 vehicles)
7.4.1.1 Low density with low speed scenarios(40 km/h)
7.4.1.2 Low density with high speed scenarios(110 km/h)
7.4.2 High Density Scenarios(50 and100 vehicles)
7.4.2.1 High density with low speed scenarios(40 km/h)
7.4.2.2 High density with high speed scenarios(110 km/h)
7.5 Summary
8.CHAPTER8:CONCLUSION AND FUTURE WORK
ACKNOWLEDGEMENTS
PUBLISHED ACADEMIC PAPERS
REFERENCES
【參考文獻】:
期刊論文
[1]Heterogeneous Vehicular Communication Architecture and Key Technologies[J]. Liu Fuqiang 1 Shan Lianhai 2 (1. School of Electronics and Information Engineering, Tongji University, Shanghai 200092, P. R. China; 2. Shanghai Research Center for Wireless Communications, Shanghai 200335, P. R. China). ZTE Communications. 2010(04)
本文編號:2947152
【文章來源】:上海交通大學(xué)上海市 211工程院校 985工程院校 教育部直屬院校
【文章頁數(shù)】:121 頁
【學(xué)位級別】:博士
【文章目錄】:
Abstract
摘要
List of Acronyms and Abbreviations
1.CHAPTER 1:INTRODUCTION
1.1 Background and Motivation
1.2 Problem Statement and Research Objectives
1.3 Main Contributions
1.4 Thesis Organization
2.CHAPTER 2:VEHICULAR AD HOC NETWORKS OVERVIEW
2.1 Introduction
2.2 VANET Architecture and Background
2.2.1 VANET Communication System Architecture
2.2.1.1 In-Vehicle Domain
2.2.1.2 Ad-hoc Domain
2.2.1.3 Infrastructural Domain
2.2.2 VANET Components
2.2.2.1 On-Board Units(OBUs)
2.2.2.2 Application Units(AUs)
2.2.2.3 Road-Side Units(RSUs)
2.2.3 Vehicular Communication Categories
2.2.3.1 Vehicle-to-Vehicle(V2V)Communication
2.2.3.2 Vehicle-to-Infrastructure(V2I)Communication
2.2.3.3 Hybrid Architecture(V2X)
2.3 Standards for Wireless Access in VANET
2.3.1 Dedicated Short-Range Communication(DSRC)
2.3.2 IEEE1609-Standards for Wireless Access in Vehicular Environments(WAVE)
2.4 VANET Characteristics
2.5 Technical Challenges
2.6 VANET Applications and Services
2.6.1 Safety Applications
2.6.2 Traffic Monitoring and Management Applications
2.6.3 Comfort or Infotainment Applications
2.7 Summary
3.CHAPTER 3:HETEROGENEOUS VEHICULAR COMMUNICATIONS:A COMPREHENSIVE STUDY
3.1 Introduction
3.2 Heterogeneous Vehicular Communication Scenarios
3.2.1 V2V Communication
3.2.1.1 DSRC
3.2.1.2 LTE D2D
3.2.2 V2I Communication
3.2.2.1 DSRC
3.2.2.2 Cellular networks
3.3 VANET Integration with Various Heterogeneous Wireless Networks
3.3.1 Vertical Handover
3.3.2 Data Dissemination and Collection
3.3.2.1 Data dissemination
3.3.2.2 Data collection
3.3.3 Gateway Selection
3.3.4 Network Selection with Effective Quality of Service(QoS)
3.4 Beamforming,AoA and AoD for Millimeter Wave 5G and Heterogeneous Vehicular Networks)
3.4.1 Introduction
3.4.2 MmWave5G
3.4.3 Hybrid Precoding and Beamforming for mmWave5G
3.4.3.1 Definition
3.4.3.2 Hybrid digital/analog precoding/combining system model
3.4.3.3 NYUSIM Simulator
3.4.3.4 Summary
3.5 Autonomous Cars
3.5.1 Main Obstacles
3.5.2 Google Self-Driving Car
3.5.3 Open Opinion Surveys
3.6 Summary
4.CHAPTER 4:DATA RATE ADAPTATION ALGORITHMS IN WIRELESS NETWORKS
4.1 Introduction
4.2 Definition of Rate Adaptation Algorithms
4.3 Rate Adaptation Algorithms Challenges
4.4 Rate Adaptation Techniques
4.5 Rate Adaptation Mechanisms Classification
4.5.1 Classification based on channel condition information
4.5.1.1 SNR-based
4.5.1.2 SNR-based Packet statistics-based
4.5.2 Classification based on rate updating period
4.5.2.1 Frame-based
4.5.2.2 Window-based
4.5.3 Rate adaptation algorithms with and without loss differentiation
4.5.3.1 Algorithms without loss differentiation
a-Frame loss approach
b-SNR approach
4.5.3.2 Algorithms with loss differentiation
4.6 Multiband Atheros Driver for Wireless Fidelity(MadWiFi)
4.7 Multi-Retry Chain(MRR)
4.7.1 MRR Definition
4.7.2 Retry Strategies
4.8 VANET Simulation
4.9 Summary
5.CHAPTER5:TESTED ALGORITHMS IN HETEROGENEOUS VEHICULAR NETWORKS
5.1 Introduction
5.2 Adaptive Multi Rate Retry(AMRR)
5.3 Onoe Algorithm
5.4 Automatic Rate Fall back(ARF)
5.5 Adaptive Auto Rate Fallback(AARF)
5.6 Adaptive Auto Rate Fallback-Collision Detection(AARF-CD)
5.7 Minstrel Algorithm
5.8 Ideal Algorithm
5.9 Collision-Aware Rate Adaptation(CARA)
5.10 Summary
6.CHAPTER6:PERFORMANCE EVALUATION OF RATE ADAPTATION ALGORITHMS IN THE HETEROGENEOUS VEHICULAR ENVIRONMENTS
6.1 Introduction
6.2 Simulated Scenarios and Simulation Results
6.2.1 Experiment 1
6.2.2 Experiment 2
6.3 Performance Evaluation and Discussion
6.3.1 Experiment 1
6.3.1.1 Low Density Scenarios(10 and 20 vehicles)
6.3.1.2 High Density Scenarios(50 and 100 vehicles)
6.3.2 Experiment 2
6.3.2.1 Low speed scenario(10 m/s)
6.3.2.2 High speed scenario(30 m/s)
6.4 Summary
7.CHAPTER7:DZ-MINSTREL:AN EFFECTIVE RATE ADAPTATION APPROACH FOR VEHICULAR ENVIRONMENTS
7.1 Introduction
7.2 Drive Z-Minstrel(DZ-Minstrel)Rate Adaptation Algorithm
7.2.1 Retry Chain
7.2.2 Rate Selection
7.2.3 Statistics Calculation
7.3 Simulated Scenarios and Simulation Results
7.4 Performance Evaluation and Discussion
7.4.1 Low Density Scenarios(8 and25 vehicles)
7.4.1.1 Low density with low speed scenarios(40 km/h)
7.4.1.2 Low density with high speed scenarios(110 km/h)
7.4.2 High Density Scenarios(50 and100 vehicles)
7.4.2.1 High density with low speed scenarios(40 km/h)
7.4.2.2 High density with high speed scenarios(110 km/h)
7.5 Summary
8.CHAPTER8:CONCLUSION AND FUTURE WORK
ACKNOWLEDGEMENTS
PUBLISHED ACADEMIC PAPERS
REFERENCES
【參考文獻】:
期刊論文
[1]Heterogeneous Vehicular Communication Architecture and Key Technologies[J]. Liu Fuqiang 1 Shan Lianhai 2 (1. School of Electronics and Information Engineering, Tongji University, Shanghai 200092, P. R. China; 2. Shanghai Research Center for Wireless Communications, Shanghai 200335, P. R. China). ZTE Communications. 2010(04)
本文編號:2947152
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/2947152.html
教材專著