天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 科技論文 > 路橋論文 >

基于機器學習的加納摩托車碰撞事故嚴重性分析

發(fā)布時間:2020-12-28 06:53
  在加納,摩托車注冊數(shù)量差不多占機動車注冊數(shù)量的四分之一。在加納北部農(nóng)村地區(qū),騎摩托車已成為一種常見又便宜的出行方式。近年來,作為擁堵道路下經(jīng)濟可行的交通模式,摩托車在加納的城市中也越來越流行。摩托車碰撞事故通常發(fā)生在共用道路上,而與其相關的傷害與死亡是道路交通安全的重要問題,在近些年顯得尤為突出。目前,摩托車碰撞事故在加納的行人死亡原因中排名第二位。因此,有必要對導致摩托車碰撞事故的因素進行研究。摩托車碰撞事故分析在全球范圍內(nèi)是一個重要的研究領域。而在加納,還沒有關于摩托車碰撞事故嚴重性及其影響因素的研究。目前,關于預測摩托車碰撞事故嚴重性的經(jīng)典統(tǒng)計模型,相關文獻較多。傳統(tǒng)的統(tǒng)計模型有基本的假設和預定義關系,但如果它們不滿足條件,將產(chǎn)生不準確的結果。鑒于統(tǒng)計模型的缺點,本文采用基于機器學習的算法來預測摩托車碰撞事故嚴重性。機器學習技術采用非參數(shù)模型,其沒有預測變量和響應變量之間的關系推定。本文對不同的機器學習算法進行比較和評價。本文研究的事故數(shù)據(jù)來自加納建筑與道路研究院(BRRI)的國家道路交通碰撞數(shù)據(jù)庫中2011至2015年間的摩托車碰撞數(shù)據(jù)。該數(shù)據(jù)被劃分為4種損傷嚴重性類型:致命,... 

【文章來源】:江蘇大學江蘇省

【文章頁數(shù)】:140 頁

【學位級別】:博士

【文章目錄】:
摘要
ABSTRACT
1 INTRODUCTION
    1.1 Background
    1.2 Problem Statement
    1.3 Research Objectives and Scope
        1.3.1 Research Objective
        1.3.2 Scope of the Research
    1.4 Significance of the Study
    1.5 Structure of the Dissertation
2 REVIEW OF FACTORS AFFECTING MOTORCYCLE CRASH SEVERITY AND MOTORCYCLE CRASH SEVERITY ANALYSIS METHODS
    2.1 Introduction
    2.2 Contributing Factors Responsible to Motorcycle Crash Severity
        2.2.1 Motorcyclists’Characteristics
        2.2.2 Roadway Features and Roadside Fittings
        2.2.3 Crash Characteristics
        2.2.4 Temporal Characteristics
        2.2.5 Environmental Conditions
    2.3 Crash Severity Studies
        2.3.1 Characteristics of crash-injury severity data
        2.3.2 Traditional Statistical Techniques for Motorcycle Crash Severity Analysis
        2.3.3 Machine Learning Techniques for Motorcycle Crash Severity Analysis
    2.4 Summary
3 PROPOSED RESEARCH METHODS
    3.1 Introduction
    3.2 Classification Methods
        3.2.1 Neural Networks
        3.2.2 Rule-based classification
        3.2.3 Classification and Regression Trees
        3.2.4 J48 decision tree classifier
        3.2.5 Instance-Based learning with parameter k
    3.3 Ensemble methods
        3.3.1 Introduction
        3.3.2 AdaBoost
        3.3.3 Bagging
        3.3.4 Random Forest
        3.3.5 Majority Vote Combiner
    3.4 Modeling Tools
    3.5 Validation of the models
    3.6 Performance metrics
    3.7 Quantifying the Contributing Factors of Motorcyclist Injury Severity
    3.8 Summary
4 PREPARATION AND UNDERSTANDING OF DATA
    4.1 Introduction
    4.2 Data Collection
    4.3 Data Processing
    4.4 Description of the Data
    4.5 Summary
5 CONFIGURATION OF MACHINE LEARNING MODELS FOR PREDICTION OF MOTORCYCLE CRASH SEVERITY
    5.1 Introduction
    5.2 Loading the data into the WEKA
    5.3 Classifiers
        5.3.1 Multilayer Perceptron
        5.3.2 PART:Rule-based classifier
        5.3.3 Classification and Regression Trees
        5.3.4 J48 decision tree classifier
        5.3.5 Instance-Based learning with parameter k
    5.4 Improving Results with Construction of Ensembles
    5.5 Quantifying the Contributing Factors of Motorcyclist Injury Severity
    5.6 Summary
6 RESULTS AND COMPARATIVE ANALYSIS OF DEVELOPED CLASSIFIERS
    6.1 Introduction
    6.2 Comparing Results of Ensembles and Individual Classifiers
        6.2.1 Individual Classifiers
        6.2.2 Classifier Ensemble
    6.3 Quantifying the Contributing Factors of Motorcyclist Injury Severity
7 CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS
    7.1 Introduction
    7.2 Conclusions
    7.3 Future Research Directions
REFERENCE
ACKNOWLEDGEMENTS
PUBLICATIONS
Appendix A Summary of Output from the Classifiers
    Appendix A.1 MLP Classifier
    Appendix A.2 PART Classifier
    Appendix A.3 CART Classifier
    Appendix A.4 J48 Classifier
    Appendix A.5 IBk Classifier
Appendix B Summary of Output from the Ensembles
    Appendix B.1 AdaBoost
        Appendix B1.1 BoostingMLP
        Appendix B1.2 BoostingPART
        Appendix B1.3 BoostingCART
        Appendix B1.4 BoostingJ
        Appendix B1.5 BoostingIBk
    Appendix B.2 Bagging
        Appendix B2.1 BaggingMLP
        Appendix B2.2 BaggingPART
        Appendix B2.3 BaggingCART
        Appendix B2.4 BaggingJ
        Appendix B2.5 BaggingIBk
    Appendix B.3 Random Forest
    Appendix B.4 Majority Vote Combiner
Appendix C Summary of Output from the Evaluator



本文編號:2943320

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/2943320.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權申明:資料由用戶376f1***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com