基于軌跡數(shù)據(jù)的城市交通需求熱點(diǎn)區(qū)域推薦研究
[Abstract]:At present, with the continuous acceleration of urbanization, the increasing living standards of people lead to the rapid growth of the number of private cars, and the pressure of urban road traffic is increasing. It is urgent to analyze a large number of traffic data to guide municipal road planning and improve the level of urban management, and to find the law of urban operation from the complicated traffic data. At the same time, with the rapid development of wireless communication technology and intelligent mobile terminal, the trajectory data acquisition of mobile objects becomes more convenient. Taxi trajectory data has become a hot research topic in recent years because of its easy collection, wide distribution and large amount of data, which makes the data mining of taxi GPS trajectory data become a hot research topic in recent years. At present, there are some problems in taxi industry, such as high no-load rate and difficult taxi ride, so it is of great significance to provide passenger recommendation service for taxi users. In this paper, through the study of a large number of taxi GPS data, the taxi passenger stop point is analyzed, the hidden law in the track data is found by using data mining technology, and the hot spot area and recommendation method of taxi passenger are deeply studied. Provide hot spot recommendation service for taxi users. The purpose of this paper is to reduce taxi no-load cruise, reduce urban traffic pollution, relieve traffic pressure and provide valuable reference for taxi operation and management. First of all, the taxi GPS data and road network data are preprocessed for later data analysis and processing. The network is edited twice on ArcGIS platform, the data of road network is topologically processed, the attribute field is perfected and the network data set is established to verify it. The map matching method suitable for low frequency sampling is adopted, and the road network topology and speed constraints are added to calibrate the vehicle position information with the road network information on the electronic map to determine the actual position of the vehicle in the road network. Secondly, by using the statistical analysis method, the variation of taxi passenger stop with time is obtained, and a semi-supervised nearest neighbor propagation algorithm based on particle swarm optimization (PSO-SAP) is proposed, which can be used to discover the hot spots of taxi candidates. The PSO-SAP algorithm is integrated on ArcGIS platform, and the trajectory data are analyzed in time and space. Combined with ArcGIS platform, the hot spot area display is realized, and the distribution of taxi passenger hot spot area in different time periods is analyzed. Finally, a hot area with high probability of taxi user recommendation is proposed, which combines the trust degree of taxi users. The experimental results show that the recommendation results have high accuracy.
【學(xué)位授予單位】:蘭州交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP311.13;U491
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 石陸魁;張延茹;張欣;;基于時(shí)空模式的軌跡數(shù)據(jù)聚類算法[J];計(jì)算機(jī)應(yīng)用;2017年03期
2 杜勝蘭;李楓;黃長(zhǎng)青;劉子政;李默穎;栗法;王英;;基于軌跡數(shù)據(jù)的武漢大學(xué)學(xué)生行為規(guī)律分析[J];測(cè)繪地理信息;2017年01期
3 張俊濤;武芳;張浩;;利用出租車軌跡數(shù)據(jù)挖掘城市居民出行特征[J];地理與地理信息科學(xué);2015年06期
4 廖律超;蔣新華;鄒復(fù)民;李璐明;賴宏圖;;浮動(dòng)車軌跡數(shù)據(jù)聚類的有向密度方法[J];地球信息科學(xué)學(xué)報(bào);2015年10期
5 吳笛;杜云艷;易嘉偉;魏海濤;莫洋;;基于密度的軌跡時(shí)空聚類分析[J];地球信息科學(xué)學(xué)報(bào);2015年10期
6 張仕學(xué);李石君;余偉;任洪偉;;突發(fā)事件人群異常聚集熱點(diǎn)區(qū)域預(yù)測(cè)[J];中國(guó)安全科學(xué)學(xué)報(bào);2015年09期
7 王超;楊靜;張健沛;;基于軌跡位置形狀相似性的隱私保護(hù)算法[J];通信學(xué)報(bào);2015年02期
8 吳俊偉;朱云龍;庫(kù)濤;王亮;;基于網(wǎng)格聚類的熱點(diǎn)路徑探測(cè)[J];吉林大學(xué)學(xué)報(bào)(工學(xué)版);2015年01期
9 鄭宇;;城市計(jì)算概述[J];武漢大學(xué)學(xué)報(bào)(信息科學(xué)版);2015年01期
10 張健欽;仇培元;杜明義;;基于時(shí)空軌跡數(shù)據(jù)的出行特征挖掘方法[J];交通運(yùn)輸系統(tǒng)工程與信息;2014年06期
相關(guān)博士學(xué)位論文 前5條
1 甘海濤;半監(jiān)督聚類與分類算法研究[D];華中科技大學(xué);2014年
2 袁晶;大規(guī)模軌跡數(shù)據(jù)的檢索、挖掘和應(yīng)用[D];中國(guó)科學(xué)技術(shù)大學(xué);2012年
3 袁冠;移動(dòng)對(duì)象軌跡數(shù)據(jù)挖掘方法研究[D];中國(guó)礦業(yè)大學(xué);2012年
4 張治華;基于GPS軌跡的出行信息提取研究[D];華東師范大學(xué);2010年
5 楊肖麗;城市化進(jìn)程中農(nóng)民工的遷移行為模式及其決定[D];沈陽(yáng)農(nóng)業(yè)大學(xué);2009年
相關(guān)碩士學(xué)位論文 前10條
1 宋樂怡;海量出租車軌跡數(shù)據(jù)分析與位置推薦服務(wù)[D];華東師范大學(xué);2015年
2 欒麗娜;基于GPS數(shù)據(jù)的城市出租車運(yùn)營(yíng)分析與數(shù)據(jù)挖掘[D];山東大學(xué);2015年
3 李衢伶;基于GPS軌跡的出租車載客路徑智能推薦[D];湖南科技大學(xué);2014年
4 劉盼盼;基于空間聚類和Weka平臺(tái)的出租車載客熱點(diǎn)區(qū)域挖掘研究[D];吉林大學(xué);2014年
5 潘梅;基于OpenStreetMap的移動(dòng)位置導(dǎo)航系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)[D];西安電子科技大學(xué);2014年
6 齊林;基于GPS數(shù)據(jù)的出租車交通運(yùn)行特性研究及應(yīng)用[D];哈爾濱工業(yè)大學(xué);2013年
7 鄒珍;基于GPS的浮動(dòng)車數(shù)據(jù)與實(shí)地圖匹配的算法研究[D];武漢理工大學(xué);2013年
8 童曉君;基于出租車GPS數(shù)據(jù)的居民出行行為分析[D];中南大學(xué);2012年
9 尋峗;實(shí)時(shí)移動(dòng)路線推薦系統(tǒng)的研究與實(shí)現(xiàn)[D];上海交通大學(xué);2012年
10 譚川豫;移動(dòng)對(duì)象軌跡分析技術(shù)研究[D];國(guó)防科學(xué)技術(shù)大學(xué);2010年
,本文編號(hào):2485439
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/2485439.html