壓路機液壓系統(tǒng)故障診斷研究
[Abstract]:Vibratory roller, as an important engineering compaction machine, is widely used in road engineering, airport port and municipal construction and other engineering fields. In the large construction site, it is often the cooperative operation of the construction machinery group. If the roller fails, the machinery and equipment working with it will be forced to stop work, which will affect the progress of the project and delay the construction period and even bring great economic losses. Hydraulic system is the main system of vibratory roller, its working environment is often bad, the working condition is relatively complex, and the probability of failure is high. The research work on fault diagnosis of hydraulic system of vibratory roller is helpful to eliminate the fault of hydraulic system in time, give full play to the maximum efficiency of vibratory roller, and ensure the quality of the project and speed up the progress of the project. It is of great economic and practical significance to improve economic efficiency. In this paper, the working principle of full hydraulic vibratory roller and the basic faults and troubleshooting methods of hydraulic system are analyzed. A principal component analysis (PCA) method is proposed to extract fault features, and then fuzzy reasoning and fuzzy neural network are used to recognize the fault pattern. The simulation results show that the fuzzy neural network has better robustness and stability to fault recognition. In this paper, the traditional principal component analysis method is improved, and the axial piston pump is taken as an example to reduce the redundancy, and to ensure that the data after dimension reduction still carry enough original sample data information. Then, taking the data after dimension reduction by principal component analysis as samples, fuzzy reasoning and fuzzy neural network are used to identify the faults, and through simulation analysis and comparison, A fault diagnosis model of hydraulic system of roller based on principal component analysis and fuzzy neural network is established. The simulation results show that the model has good fault tolerance and robustness for hydraulic system fault diagnosis of roller, and avoids the disadvantage that the standard neural network is easy to fall into local convergence. The model can be widely used in fault diagnosis of hydraulic system of roller.
【學位授予單位】:長安大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:U415.521
【參考文獻】
相關期刊論文 前10條
1 張前;胡水英;張青哲;;起升機構液壓系統(tǒng)模糊神經(jīng)網(wǎng)絡故障診斷[J];流體傳動與控制;2015年04期
2 蔣林;;振動壓路機振動系統(tǒng)故障分析[J];科技資訊;2015年07期
3 李紅彩;;2014-2015年壓路機市場分析[J];建筑機械;2015年04期
4 毛洪美;;基于人工智能的液壓傳動系統(tǒng)故障診斷技術的研究與探討[J];科技風;2014年24期
5 許葆華;韓東;杜明;;基于小波-平滑能量算子解調(diào)的液壓泵故障分析[J];液壓與氣動;2014年08期
6 李玉奎;王志宏;郭紅娟;;現(xiàn)代壓路機技術發(fā)展趨勢[J];科技與企業(yè);2014年03期
7 閆玉民;白巖磊;;國內(nèi)外壓路機的現(xiàn)狀及分析[J];中國建設信息;2013年14期
8 李程輝;;淺談神經(jīng)網(wǎng)絡在機械工程中的應用[J];河南科技;2013年09期
9 龔志飛;郭迎清;;基于主元分析法的航空發(fā)動機傳感器故障診斷研究[J];計算機測量與控制;2012年08期
10 任偉建;王喜剛;王思宇;;基于模糊神經(jīng)網(wǎng)絡的抽油機故障診斷方法[J];自動化技術與應用;2012年04期
相關博士學位論文 前4條
1 王振華;描述系統(tǒng)的故障診斷觀測器設計[D];哈爾濱工業(yè)大學;2013年
2 曾慶虎;機械動力傳動系統(tǒng)關鍵部件故障預測技術研究[D];國防科學技術大學;2010年
3 張可;基于征兆分析的多故障智能診斷方法的研究和應用[D];重慶大學;2010年
4 賀湘宇;挖掘機液壓系統(tǒng)故障診斷方法研究[D];中南大學;2008年
相關碩士學位論文 前10條
1 劉蒙蒙;振動壓路機智能化的關鍵技術研究[D];長安大學;2014年
2 楊蕊;基于定量知識的分層有向圖故障診斷方法及其應用[D];太原理工大學;2014年
3 盛博;基于圖論的數(shù)控機床多故障診斷方法研究[D];華中科技大學;2014年
4 謝莎莎;基于不動點定理的神經(jīng)網(wǎng)絡穩(wěn)定性分析[D];集美大學;2014年
5 唐明;振動壓路機無級調(diào)幅調(diào)頻實現(xiàn)的研究[D];青島科技大學;2014年
6 劉偉宏;聲發(fā)射信號分析中的粒子濾波理論及其算法與實現(xiàn)[D];長沙理工大學;2014年
7 唐銘;基于EMD及神經(jīng)網(wǎng)絡的柱塞泵故障診斷的方法研究[D];天津大學;2013年
8 張洪瑾;基于模糊神經(jīng)網(wǎng)絡的掘進機液壓系統(tǒng)故障診斷研究[D];南京理工大學;2013年
9 楊艷霞;基于LabVIEW的挖掘機液壓系統(tǒng)狀態(tài)檢測系統(tǒng)的設計研究[D];河南科技大學;2012年
10 韓偉;混凝土輸送設備液壓系統(tǒng)的建模與故障分析[D];東北大學;2011年
,本文編號:2478062
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/2478062.html