基于GPS軌跡數(shù)據(jù)的擁堵路段預(yù)測(cè)
發(fā)布時(shí)間:2019-05-10 06:26
【摘要】:基于真實(shí)的GPS軌跡數(shù)據(jù),對(duì)城市擁堵路段進(jìn)行預(yù)測(cè).在此過程中,摒棄傳統(tǒng)的基于交通流預(yù)測(cè)和擁堵識(shí)別的方法,提出一種新的基于擁堵向量和擁堵轉(zhuǎn)移矩陣的擁堵路段預(yù)測(cè)方法.該方法同時(shí)考慮路段擁堵的時(shí)間周期性和時(shí)空相關(guān)性,通過對(duì)出租車GPS軌跡數(shù)據(jù)進(jìn)行挖掘和訓(xùn)練,建立擁堵向量和擁堵轉(zhuǎn)移矩陣,實(shí)現(xiàn)對(duì)擁堵路段的預(yù)測(cè).真實(shí)數(shù)據(jù)集上的實(shí)驗(yàn)驗(yàn)證了所提的擁堵路段預(yù)測(cè)方法的有效性.
[Abstract]:Based on the real GPS trajectory data, the congested sections of the city are predicted. In this process, a new method based on congestion vector and congestion transfer matrix is proposed, which abandons the traditional methods based on traffic flow prediction and congestion identification. At the same time, the time periodicity and temporal and spatial correlation of congestion are considered in this method. By mining and training the GPS trajectory data of taxi, the congestion vector and congestion transfer matrix are established to predict the congested road section. Experiments on real data sets verify the effectiveness of the proposed method for predicting congested sections.
【作者單位】: 東北大學(xué)信息科學(xué)與工程學(xué)院;
【基金】:國(guó)家自然科學(xué)基金資助項(xiàng)目(61272177)
【分類號(hào)】:U491;TP311.13
[Abstract]:Based on the real GPS trajectory data, the congested sections of the city are predicted. In this process, a new method based on congestion vector and congestion transfer matrix is proposed, which abandons the traditional methods based on traffic flow prediction and congestion identification. At the same time, the time periodicity and temporal and spatial correlation of congestion are considered in this method. By mining and training the GPS trajectory data of taxi, the congestion vector and congestion transfer matrix are established to predict the congested road section. Experiments on real data sets verify the effectiveness of the proposed method for predicting congested sections.
【作者單位】: 東北大學(xué)信息科學(xué)與工程學(xué)院;
【基金】:國(guó)家自然科學(xué)基金資助項(xiàng)目(61272177)
【分類號(hào)】:U491;TP311.13
【參考文獻(xiàn)】
相關(guān)期刊論文 前1條
1 姜桂艷;Q,
本文編號(hào):2473411
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/2473411.html
最近更新
教材專著