結(jié)合梁自錨式懸索橋主纜錨固區(qū)傳力機(jī)理研究
[Abstract]:The self-anchored suspension bridge has developed rapidly in recent years, and the bridge type is also becoming more and more diversified. The self-anchored suspension bridge with self-anchored suspension bridge has been constructed by steel structure or concrete structure, and now the steel-anchored suspension bridge has been used as a new bridge structure in the self-anchored suspension bridge. The unique mechanical performance of the combined beam and the continuous increase of the self-anchored suspension bridge of the combined beam are more and more important to the study of the transmission mechanism of the main cable force in the anchorage zone. Combined with Yinchuan Binhe River Bridge, this paper studies the self-anchored suspension bridge of the combined beam, and the concrete research contents and achievements are as follows: (1) The stress and strain of the main beam are tested based on the real bridge, and the distribution law of the internal force of the main beam is analyzed. According to the actual structure, the finite element model of the full-bridge rod system and the local fine finite element model of the main cable anchorage zone are respectively established, and the connection of different materials of the main beam is simulated according to the previous research results, and the calculation result is compared with the test, and the correctness of the calculation model is verified; and (2) according to the finite element analysis result, the stress distribution law of the anchor zone of the main cable, the sliding condition of the shear nail and the proportion of the axial force of each component are analyzed, the transmission path of the main cable force in the anchoring region is obtained, the stress performance of the main beam under the multiple loads is analyzed, The limit state of the bearing capacity of the main cable anchorage zone is explored, and the damage form in the limit state of the anchorage zone is obtained; and (3) the design scheme of the main cable anchorage zone with different parameters is proposed based on the analysis of the force transmission route of the main cable and the limit state of the bearing capacity, The influence of different design parameters on the anchorage force transmission mechanism and the stress performance of the anchorage zone is compared, and the design method of the main cable anchorage zone of the combined beam self-anchored suspension bridge is discussed. The analysis results show that after the main beam is subjected to the anchoring force of the main cable, the longitudinal compression and the external bending of the surface of the main beam are caused, the longitudinal force of the main cable is transmitted to the web and the top plate by the weld of the web of the reinforced part of the main beam, and the axial force on the top plate is spread inward at an angle of 45 degrees, A part is transmitted to the concrete bridge deck by a shear nail above the longitudinal beam web, and the rest part is transmitted to the longitudinal beam web through the shearing force; the axial force is spread to the middle by the two sides under the action of the cross beam, the section forms a uniform whole force, and the force transfer process at the distance of 20 meters from the end of the beam is finished. Under the limit load, the concrete bridge deck is cracked at the upper part of the end cross beam, and the position where the oblique web of the longitudinal beam and the outer web are closed is broken, leading to the failure of the internal shear nail. The width of the end cross beam is reduced and the common cross beam can be used for optimizing the transmission of the main cable force, the action of the shear nail on the cross beam is small, and a cluster arrangement can be adopted for construction.
【學(xué)位授予單位】:西南交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:U448.25
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 劉仲波,王海龍,陳偉;舊金山-奧克蘭海灣新橋的主纜設(shè)計(jì)[J];世界橋梁;2004年01期
2 葉覺(jué)明;龔志剛;李榮慶;李鵬;;用干燥空氣除濕方法防止主纜腐蝕[J];世界橋梁;2010年01期
3 劉睿;雷雨亮;周水興;;無(wú)支架纜索吊裝系統(tǒng)單跨雙吊點(diǎn)主纜計(jì)算[J];重慶交通大學(xué)學(xué)報(bào)(自然科學(xué)版);2010年06期
4 蔣波;劉小勇;高亞琦;李漾;;泰州大橋主纜施工安全技術(shù)[J];施工技術(shù);2013年11期
5 黃鐵生;大島大橋主纜施工[J];國(guó)外橋梁;1993年03期
6 沈慧;陳常松;顏東煌;;非均勻變溫場(chǎng)中主纜初始位形的迭代計(jì)算[J];長(zhǎng)沙交通學(xué)院學(xué)報(bào);2006年03期
7 ;泰州長(zhǎng)江大橋架設(shè)3100m主纜[J];現(xiàn)代交通技術(shù);2010年05期
8 胡利平,石國(guó)彬,吳清發(fā),張文忠;汕頭海灣大橋主纜防腐[J];廣東公路交通;1997年01期
9 王宏博;陳國(guó)紅;;桃花峪黃河大橋主纜錨固段設(shè)計(jì)與受力分析[J];橋梁建設(shè);2013年06期
10 魏子杰;;泰州大橋主纜干燥空氣除濕法泄漏率的測(cè)試實(shí)驗(yàn)研究[J];潔凈與空調(diào)技術(shù);2014年01期
相關(guān)會(huì)議論文 前10條
1 金平;李剛;;廈門(mén)海滄大橋主纜束股制作[A];中國(guó)公路學(xué)會(huì)橋梁和結(jié)構(gòu)工程學(xué)會(huì)一九九九年橋梁學(xué)術(shù)討論會(huì)論文集[C];1999年
2 周軍輝;丁鶴雁;黃玖梅;房莉;;國(guó)內(nèi)外大跨徑懸索橋主纜防護(hù)涂裝技術(shù)的應(yīng)用與發(fā)展[A];中國(guó)公路學(xué)會(huì)橋梁和結(jié)構(gòu)工程學(xué)會(huì)2001年橋梁學(xué)術(shù)討論會(huì)論文集[C];2001年
3 張騰;閆友聯(lián);;潤(rùn)揚(yáng)長(zhǎng)江公路大橋主纜緊纜機(jī)開(kāi)發(fā)設(shè)計(jì)與研究[A];第二屆全國(guó)公路科技創(chuàng)新高層論壇論文集(上卷)[C];2004年
4 甘科;李東平;孫劍飛;趙干明;;麗君橋主纜、吊桿安裝施工技術(shù)[A];新世紀(jì)預(yù)應(yīng)力技術(shù)創(chuàng)新學(xué)術(shù)交流會(huì)論文集[C];2002年
5 沈銳利;朱栓來(lái);;主纜為空間曲線的懸索橋靜動(dòng)力特性研究[A];中國(guó)土木工程學(xué)會(huì)橋梁及結(jié)構(gòu)工程學(xué)會(huì)第11屆年會(huì)論文集[C];1994年
6 王峻;楊寧;吉林;;江陰大橋主纜施工[A];中國(guó)公路學(xué)會(huì)橋梁和結(jié)構(gòu)工程學(xué)會(huì)一九九九年橋梁學(xué)術(shù)討論會(huì)論文集[C];1999年
7 黃玖梅;房莉;丁鶴雁;周軍輝;;鵝公巖大橋主纜防護(hù)涂裝技術(shù)設(shè)計(jì)[A];中國(guó)公路學(xué)會(huì)橋梁和結(jié)構(gòu)工程學(xué)會(huì)2001年橋梁學(xué)術(shù)討論會(huì)論文集[C];2001年
8 方明山;;海滄大橋主纜纏絲拉力分析[A];中國(guó)公路學(xué)會(huì)橋梁和結(jié)構(gòu)工程學(xué)會(huì)一九九九年橋梁學(xué)術(shù)討論會(huì)論文集[C];1999年
9 王福敏;;影響大跨懸索橋PWS主纜施工精度原因分析[A];中國(guó)土木工程學(xué)會(huì)橋梁及結(jié)構(gòu)工程學(xué)會(huì)第11屆年會(huì)論文集[C];1994年
10 尹紅;葉覺(jué)明;;超大跨度懸索橋用高強(qiáng)鋼絲和主纜制作及架設(shè)技術(shù)[A];全國(guó)金屬制品信息網(wǎng)第22屆年會(huì)論文集[C];2010年
相關(guān)重要報(bào)紙文章 前7條
1 記者 顧海燕;泰州長(zhǎng)江大橋架設(shè)主纜[N];泰州日?qǐng)?bào);2010年
2 楊如海邋朱紅亮 陳歡;科技創(chuàng)新闖“三關(guān)” 龍城大橋騰“巨龍”[N];常州日?qǐng)?bào);2007年
3 本報(bào)見(jiàn)習(xí)記者 夏海軍 賈克帥;自主創(chuàng)新架“飛虹”[N];安徽日?qǐng)?bào);2014年
4 曹戰(zhàn)鋒 張建友;企業(yè)生存的沃土[N];科技日?qǐng)?bào);2003年
5 陳歡;運(yùn)河改線進(jìn)入最后階段[N];常州日?qǐng)?bào);2007年
6 龐道寧邋林蘭;泰州大橋建設(shè)采用多項(xiàng)科技創(chuàng)新[N];鎮(zhèn)江日?qǐng)?bào);2008年
7 袁弘;清水河懸索橋年內(nèi)通車[N];成都日?qǐng)?bào);2007年
相關(guān)博士學(xué)位論文 前1條
1 李翠娟;超大跨徑CFRP主纜懸索橋合理結(jié)構(gòu)體系研究[D];西南交通大學(xué);2011年
相關(guān)碩士學(xué)位論文 前10條
1 俞明德;懸索橋主纜溫度場(chǎng)及對(duì)主纜影響的研究[D];西南交通大學(xué);2010年
2 肖剛;三塔懸索橋主纜與鞍座抗滑移設(shè)計(jì)研究[D];西南交通大學(xué);2015年
3 付云寶;橋梁主纜檢查車兩履帶行走同步控制研究[D];長(zhǎng)安大學(xué);2015年
4 謝丹;懸索橋不等高索塔對(duì)于主纜性態(tài)的影響分析[D];長(zhǎng)安大學(xué);2015年
5 俞平橋;高原凍雨山區(qū)懸索橋主纜和鋼箱梁線形及內(nèi)力研究[D];長(zhǎng)安大學(xué);2015年
6 肖光清;自錨式懸索橋平行鋼絲主纜扭轉(zhuǎn)模型試驗(yàn)研究[D];長(zhǎng)沙理工大學(xué);2014年
7 溫智泉;懸索橋主纜非線性計(jì)算分析及影響因素研究[D];重慶交通大學(xué);2015年
8 徐菲菲;海底觀測(cè)網(wǎng)絡(luò)可控型主纜分支器的研究[D];浙江大學(xué);2016年
9 陳松;超大跨自錨式懸索橋模型試驗(yàn)的主纜力學(xué)行為研究[D];重慶交通大學(xué);2013年
10 何婧;大跨度雙纜懸索橋結(jié)構(gòu)體系及其受力特性研究[D];西南交通大學(xué);2016年
,本文編號(hào):2439598
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/2439598.html