基于改進GA-BP網(wǎng)絡(luò)的系泊纜力預(yù)測建模與仿真
發(fā)布時間:2018-11-16 21:11
【摘要】:針對大型開敞式碼頭系靠泊安全保障和預(yù)警控制需求,研究了一類基于遺傳算法和BP網(wǎng)絡(luò)的系泊船舶纜力預(yù)測模型?紤]影響系泊纜力的環(huán)境動力因素,使用權(quán)值統(tǒng)計法確定了預(yù)測模型的結(jié)構(gòu);利用個體父代信息和當(dāng)代個體的局部梯度信息對預(yù)測模型的學(xué)習(xí)方法進行了改進;基于改進的預(yù)測模型,提出了大型開敞式碼頭系泊船舶纜力預(yù)測方法。仿真結(jié)果表明:改進后的系泊船舶纜力預(yù)測模型在進化代數(shù)、最大適應(yīng)度和預(yù)測精度等方面的性能均有所提高,且預(yù)測誤差均值低于10%,滿足實際需求。
[Abstract]:In order to meet the demand of berthing safety and early warning control of large open wharf, a kind of forecasting model of mooring ship cable force based on genetic algorithm and BP network is studied. Considering the environmental dynamic factors which affect the mooring force, the structure of the prediction model is determined by the statistical method of the right of use, and the learning method of the prediction model is improved by using the individual parent information and the local gradient information of the contemporary individual. Based on the improved prediction model, a prediction method for mooring ship cable force of large open wharf is proposed. The simulation results show that the performance of the improved mooring ship cable force prediction model has been improved in evolutionary algebra, maximum fitness and prediction accuracy, and the mean value of prediction error is less than 10, which meets the actual demand.
【作者單位】: 大連交通大學(xué)機械工程學(xué)院;大連交通大學(xué)軟件學(xué)院;
【基金】:國家自然科學(xué)基金(61074029) 大連市計劃(2014A11GX006)
【分類號】:TP18;U653.2;U675.92
本文編號:2336649
[Abstract]:In order to meet the demand of berthing safety and early warning control of large open wharf, a kind of forecasting model of mooring ship cable force based on genetic algorithm and BP network is studied. Considering the environmental dynamic factors which affect the mooring force, the structure of the prediction model is determined by the statistical method of the right of use, and the learning method of the prediction model is improved by using the individual parent information and the local gradient information of the contemporary individual. Based on the improved prediction model, a prediction method for mooring ship cable force of large open wharf is proposed. The simulation results show that the performance of the improved mooring ship cable force prediction model has been improved in evolutionary algebra, maximum fitness and prediction accuracy, and the mean value of prediction error is less than 10, which meets the actual demand.
【作者單位】: 大連交通大學(xué)機械工程學(xué)院;大連交通大學(xué)軟件學(xué)院;
【基金】:國家自然科學(xué)基金(61074029) 大連市計劃(2014A11GX006)
【分類號】:TP18;U653.2;U675.92
【相似文獻】
相關(guān)期刊論文 前5條
1 王平;王彩蕓;王文健;劉啟躍;;GA-BP網(wǎng)絡(luò)在鋼軌磨損量預(yù)測中的應(yīng)用[J];潤滑與密封;2011年02期
2 周云龍;吳昱;;基于EMD與GA-BP網(wǎng)絡(luò)的離心泵汽蝕故障診斷[J];化工自動化及儀表;2014年06期
3 王亞軍;王旭東;周永勤;顏頤欣;;準(zhǔn)抗毀化電源蓄電池SOC預(yù)測的GA-BP網(wǎng)絡(luò)方法[J];電機與控制學(xué)報;2010年06期
4 白鐵成;張任;齊立美;任濱;;小波包和GA-BP網(wǎng)絡(luò)結(jié)合的紅棗病害識別方法[J];哈爾濱理工大學(xué)學(xué)報;2011年06期
5 ;[J];;年期
相關(guān)碩士學(xué)位論文 前1條
1 代德宇;基于GA-BP網(wǎng)絡(luò)的銅管生產(chǎn)過程能耗預(yù)測模型研究及應(yīng)用[D];廣東工業(yè)大學(xué);2016年
,本文編號:2336649
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/2336649.html
教材專著