水環(huán)境下大跨度上承式拱橋的靜、動(dòng)力特性分析
[Abstract]:In recent years, with the development of freeway and the increase of railway speed, the demand for road alignment is increasing day by day, so it is inevitable to cross deep gully canyons along the line. Because of the terrain condition of the canyon, the scheme of the above arch bridge is reasonable. However, for water rich areas, canyons are a multi-choice terrain for water conservancy projects. From the point of view of realizing economic benefit, the climbing height of the line should not be too high, and the decrease of the design elevation will cause the arch ring to be flooded by the reservoir water. Although the water and air are both fluid, there are still some differences in some specific characteristics. Based on this, this paper carries out an analysis and research on the large-span arch bridge in the reservoir area: first of all, In view of the environmental characteristics of long-span overbearing arch bridges different from other arch bridges in the reservoir area, it is determined that the main influencing factors of this kind of arch bridges are different from other arch bridges in dynamic and dynamic analysis. The underwater structure of long span overbearing arch bridge will be affected by water. In normal water environment, the effect of flowing water on the structure mainly lies in the lateral flow pressure and vertical water buoyancy. Under the action of earthquake, the structure will deform and vibrate, and at the same time, it will cause the water body to vibrate, so that the water body will react on the structure through the form of dynamic water pressure, thus forming the action and reaction between the structure and the water body and running through the earthquake action all the time. Therefore, fluid-solid coupling is the main influencing factor under earthquake. Secondly, the basic characteristics of the fluid are studied, and the calculation formulas of the flowing water pressure and the water buoyancy of the underwater arch ring are obtained. In this paper, the calculation theory of fluid-solid coupling is studied, and the fluid-structure coupling calculation method suitable for underwater arch ring structure is explored. Thirdly, the finite element theory of arch structure is studied. Although the curved beam element is more suitable for the load effect, free vibration and forced vibration of the arch, but because of its complexity, the engineering finite element method is more often used to solve the arch structure effect. Finally, according to the engineering example, the spatial finite element model of long-span overbearing arch bridge is established, and two main influencing factors in static analysis are considered, which are the effect of flowing water pressure and water buoyancy. This paper analyzes the influence degree and law of two main influencing factors on the internal force of arch ring, discusses whether the influence of flowing water pressure can be ignored under the influence of flowing water velocity, regards reservoir water as static water, and probes into the fortification area of low intensity earthquake. The height at which the arch can be submerged in a still water environment; After considering the fluid-solid coupling, the influence of the submergence depth of the arch ring on the natural vibration characteristics of the arch bridge and the degree and law of the influence of the submergence depth of the arch ring on the internal force of the arch ring under the action of the earthquake at this time are studied, and the fortification area of the high intensity earthquake is discussed. The height at which the arch can withstand the inundation.
【學(xué)位授予單位】:長沙理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:U441;U448.22
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 劉曉劍;;雙鉸型上承式拱橋施工監(jiān)測[J];山西建筑;2009年34期
2 尹超;;大跨度上承式鋼筋混凝土箱肋拱橋設(shè)計(jì)[J];中國市政工程;2010年01期
3 劉迎春;薛素鐸;上官興;;上承式拱橋結(jié)構(gòu)形式變化綜述[J];公路;2012年03期
4 尹超;;大跨度上承式鋼筋混凝土箱肋拱橋設(shè)計(jì)與施工[J];公路交通科技(應(yīng)用技術(shù)版);2011年11期
5 唐家祥;主跨180m上承式吊橋方案研究[J];橋梁建設(shè);1991年01期
6 文啟濟(jì);文武;王家河;;上承式無推力拱橋的施工[J];公路交通技術(shù);2006年01期
7 馬長青;;上承式50m鋼筋混凝土拱肋施工技術(shù)[J];西部探礦工程;2006年03期
8 婁俊杰;馬敏生;覃勇剛;;上承式單肋拱橋穩(wěn)定特性研究[J];城市道橋與防洪;2009年02期
9 付殿文;;復(fù)合型上承式拱橋混凝土拱圈的澆注及變形控制[J];天津建設(shè)科技;2010年06期
10 李世平,劉華,吳忠華;上承式系桿拱橋結(jié)構(gòu)特點(diǎn)與施工[J];公路交通技術(shù);2005年03期
相關(guān)會(huì)議論文 前8條
1 王華廉;周世軍;;上承式吊橋非線性分析[A];全國索結(jié)構(gòu)學(xué)術(shù)交流會(huì)論文集[C];1991年
2 唐家祥;;主跨180米上承式吊橋方案研究[A];中國土木工程學(xué)會(huì)橋梁及結(jié)構(gòu)工程學(xué)會(huì)第九屆年會(huì)論文集[C];1990年
3 栗金光;;180米上承式吊橋整體模型試驗(yàn)[A];全國索結(jié)構(gòu)學(xué)術(shù)交流會(huì)論文集[C];1991年
4 曾志斌;文峰;史永吉;;湘潭大橋上承式鋼桁梁裂紋原因分析及加固[A];第九次全國焊接會(huì)議論文集(第2冊(cè))[C];1999年
5 李榮昌;張傳東;陳學(xué)民;張晶;;提高跨度42.2m上承式鋼桁梁橫向剛度的對(duì)策措施[A];2008年科技學(xué)術(shù)研討年提速安全與和諧鐵路論文集[C];2008年
6 樓莊鴻;劉陌生;;上承式懸索橋[A];中國公路學(xué)會(huì)橋梁和結(jié)構(gòu)工程學(xué)會(huì)2003年全國橋梁學(xué)術(shù)會(huì)議論文集[C];2003年
7 翁輝;王炎;郝超;;浙江杭新景高速公路千島湖1號(hào)橋設(shè)計(jì)[A];中國公路學(xué)會(huì)橋梁和結(jié)構(gòu)工程分會(huì)2005年全國橋梁學(xué)術(shù)會(huì)議論文集[C];2005年
8 王孝國;張曉燕;;上承式鋼管砼拱橋的計(jì)算分析[A];第八屆全國結(jié)構(gòu)工程學(xué)術(shù)會(huì)議論文集(第Ⅲ卷)[C];1999年
相關(guān)博士學(xué)位論文 前1條
1 劉迎春;上承式拉索組合拱橋索力優(yōu)化與受力性能研究[D];北京工業(yè)大學(xué);2012年
相關(guān)碩士學(xué)位論文 前10條
1 賀紅強(qiáng);上承式斜柱橋靜力特性研究[D];廣西大學(xué);2016年
2 黎亮;水環(huán)境下大跨度上承式拱橋的靜、動(dòng)力特性分析[D];長沙理工大學(xué);2015年
3 曹宇;大跨徑上承式拱橋施工控制研究[D];吉林大學(xué);2013年
4 馮祁;大跨度鐵路上承式拱橋列車走行性研究[D];中南大學(xué);2010年
5 朱婧;提速線上承式鋼桁梁橫向加固技術(shù)研究[D];西南交通大學(xué);2006年
6 吳益波;鐵路大跨度上承式鋼筋混凝土箱形拱橋設(shè)計(jì)研究[D];西南交通大學(xué);2013年
7 李靜;某大跨上承式復(fù)合拱結(jié)構(gòu)受力特性分析[D];太原理工大學(xué);2011年
8 韓金秀;跨度64m上承式八七型鐵路應(yīng)急搶修鋼梁動(dòng)力響應(yīng)分析[D];北京交通大學(xué);2010年
9 孫毅;大跨度上承式拱橋減震控制研究[D];重慶大學(xué);2006年
10 孔遁;跨津?yàn)I高速公路雙鉸型上承式拱橋施工技術(shù)研究[D];西南交通大學(xué);2005年
,本文編號(hào):2336531
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/2336531.html