交通監(jiān)控視頻中的車(chē)輛異常行為檢測(cè)
[Abstract]:In recent years, China's economy is fast and the number of motor vehicles is rising rapidly. Automobile brings us a lot of convenience, but the frequent road traffic accidents pose a great threat to the safety of people's life and property. At present, the main purpose of traffic surveillance video is to review the incident after an accident, and to a large extent rely on manual search to locate, so that only after the traffic accident can be viewed, can not be prevented in advance. In order to further regulate vehicle driving, alleviate traffic congestion and reduce traffic accidents, the detection of abnormal behavior of vehicles in traffic surveillance video has become the focus and difficulty of the research in the field of intelligent transportation, which will be the daily life of people. Social stability and harmony bring important protection. In this paper, the techniques of vehicle detection, vehicle tracking, vehicle track extraction and abnormal detection of vehicle behavior in traffic surveillance video are studied. The main work is as follows: in order to track the vehicle target, further extract the vehicle trajectory and analyze the driving behavior, the first step is to detect the vehicle target from the video surveillance data. After analyzing and comparing the existing moving target detection algorithms, this paper proposes a threshold adaptive Surendra background differential algorithm for traffic surveillance video, and combines it with the three-frame difference method to detect moving vehicles. Finally, the experimental results show that the improved algorithm can combine the advantages of background differential method and frame difference method, and has strong ability to resist environmental interference, and can restore the real target area of vehicle by taking into account the requirements of real-time and stability of traffic monitoring system. It provides vehicle area target information for vehicle tracking. The existing CamShift algorithm can realize the tracking of moving targets in video, but there are some problems such as the need to select the tracking region manually and the poor ability to resist occlusion. In order to solve the above problems and optimize the tracking effect, this paper inputs the moving vehicle detection results into the initial steps of the CamShift algorithm, and introduces the Kalman filter to predict the moving state of the vehicle. A CamShift vehicle tracking algorithm based on the Kalman filter prediction is proposed. The search range of the target vehicle in the next frame is reduced and the computational complexity of the CamShift algorithm is reduced. The tracking failure caused by the occlusion is analyzed. The prediction value of the Kalman filter is used to replace the target position calculated by the CamShift algorithm. The Kalman filter is updated as an observation. Experiments show that the improved algorithm can effectively resist the tracking failure caused by target occlusion. And the automatic tracking of moving vehicles is realized by using the result of vehicle detection in Chapter 3 when initializing the search target. By tracking the vehicle in real time, the coordinate of the moving center of the vehicle can be obtained from the external rectangular frame of the target. After that, the moving track of the vehicle is obtained by curve fitting. In this paper, the track data are analyzed in depth, and several criteria for distinguishing the motion behavior of vehicles are put forward, including the identification of the moving direction of the vehicle and the judgment of the changing track, turning head, retrograde and so on. The experimental data show that the method proposed in this chapter can be widely used in the recognition of vehicle violations, and the algorithm is easy to implement and has high stability.
【學(xué)位授予單位】:南京郵電大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類(lèi)號(hào)】:U495
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張曉媚;陳偉海;劉敬猛;趙志文;;基于柔性曲桿的車(chē)輛跟蹤算法設(shè)計(jì)與實(shí)現(xiàn)[J];北京航空航天大學(xué)學(xué)報(bào);2011年07期
2 郭鋒;王秉政;楊晨暉;;復(fù)雜背景下車(chē)輛跟蹤的改進(jìn)算法及逆行檢測(cè)[J];圖學(xué)學(xué)報(bào);2013年04期
3 劉青;張曉暉;陳建新;侯云;;基于先驗(yàn)知識(shí)的高速公路逃費(fèi)車(chē)輛跟蹤算法研究[J];公路工程;2013年04期
4 楊敏;裴明濤;王永杰;董震;武玉偉;;一種基于運(yùn)動(dòng)目標(biāo)檢測(cè)的視覺(jué)車(chē)輛跟蹤方法[J];北京理工大學(xué)學(xué)報(bào);2014年04期
5 黃福獻(xiàn);車(chē)輛跟蹤管理系統(tǒng)簡(jiǎn)介[J];汽車(chē)運(yùn)用;2001年06期
6 曹智英;;基于學(xué)習(xí)機(jī)制的時(shí)空車(chē)輛跟蹤與索引框架[J];現(xiàn)代計(jì)算機(jī);2007年05期
7 朱華林;;基于高清視頻檢測(cè)和高清圖片識(shí)別的車(chē)輛跟蹤系統(tǒng)設(shè)計(jì)[J];交通世界(運(yùn)輸.車(chē)輛);2011年07期
8 曾智洪;高速公路中的行車(chē)道檢測(cè)和車(chē)輛跟蹤(英文)[J];自動(dòng)化學(xué)報(bào);2003年03期
9 周志宇,汪亞明,曹麗;基于模糊聚類(lèi)和α-β-γ濾波的車(chē)輛跟蹤[J];浙江工業(yè)大學(xué)學(xué)報(bào);2004年01期
10 陳繼紅;;基于3G技術(shù)的車(chē)輛跟蹤服務(wù)系統(tǒng)的研究[J];物探裝備;2008年03期
相關(guān)會(huì)議論文 前3條
1 楊華;鄒月嫻;劉志剛;時(shí)廣軼;關(guān)佩;王一言;;基于視頻的復(fù)雜交通場(chǎng)景車(chē)輛跟蹤技術(shù)研究[A];第六屆全國(guó)信息獲取與處理學(xué)術(shù)會(huì)議論文集(1)[C];2008年
2 孫燎原;石川;張楊;;基于GoogleMaps的車(chē)輛跟蹤態(tài)勢(shì)顯示系統(tǒng)研究與實(shí)現(xiàn)[A];第十六屆全國(guó)青年通信學(xué)術(shù)會(huì)議論文集(上)[C];2011年
3 張暉;董育寧;夏洋;;一種基于改進(jìn)的GVF-Snake模型的車(chē)輛跟蹤算法[A];第十三屆全國(guó)圖象圖形學(xué)學(xué)術(shù)會(huì)議論文集[C];2006年
相關(guān)重要報(bào)紙文章 前4條
1 神州通信有限公司GIS部 廖志杰;構(gòu)建中國(guó)空間信息服務(wù)網(wǎng)絡(luò)平臺(tái)系統(tǒng)(六)[N];通信產(chǎn)業(yè)報(bào);2004年
2 中國(guó)全球定位系統(tǒng)技術(shù)應(yīng)用協(xié)會(huì)GPS信息咨詢(xún)服務(wù)部 曹沖;GPS上車(chē)[N];計(jì)算機(jī)世界;2002年
3 本報(bào)記者 楊濱;打牢百年精品客專(zhuān)的基石[N];人民鐵道;2010年
4 龐偉燕;用科技編織安全網(wǎng)[N];中國(guó)郵政報(bào);2011年
相關(guān)博士學(xué)位論文 前3條
1 吳剛;基于粒子濾波與增量學(xué)習(xí)的車(chē)輛跟蹤方法研究[D];南京理工大學(xué);2014年
2 徐旭;復(fù)雜環(huán)境下的車(chē)輛目標(biāo)跟蹤技術(shù)研究[D];吉林大學(xué);2013年
3 王軍偉;ITS中運(yùn)動(dòng)車(chē)輛自動(dòng)跟蹤方法的研究[D];中國(guó)農(nóng)業(yè)大學(xué);2003年
相關(guān)碩士學(xué)位論文 前10條
1 徐曉娟;基于視頻的車(chē)輛跟蹤算法研究[D];長(zhǎng)安大學(xué);2015年
2 高冬冬;基于車(chē)輛跟蹤軌跡的停車(chē)和逆行檢測(cè)研究[D];長(zhǎng)安大學(xué);2015年
3 董艷梅;基于相關(guān)濾波器的目標(biāo)跟蹤技術(shù)[D];北京理工大學(xué);2015年
4 陳國(guó)斌;動(dòng)態(tài)車(chē)輛的自動(dòng)跟蹤算法研究[D];石家莊鐵道大學(xué);2014年
5 宋耀;交通監(jiān)控視頻中的車(chē)輛異常行為檢測(cè)[D];南京郵電大學(xué);2015年
6 陳偉;基于粒子濾波的車(chē)輛跟蹤系統(tǒng)的研究與實(shí)現(xiàn)[D];昆明理工大學(xué);2011年
7 劉捚鋮;基于3DGIS的車(chē)輛跟蹤系統(tǒng)設(shè)計(jì)與實(shí)現(xiàn)[D];沈陽(yáng)工業(yè)大學(xué);2012年
8 丁昌華;基于視頻技術(shù)的車(chē)輛跟蹤方法研究[D];東南大學(xué);2006年
9 王磊;基于視頻的車(chē)輛跟蹤[D];沈陽(yáng)工業(yè)大學(xué);2010年
10 黃鑫娟;基于視頻的車(chē)輛跟蹤技術(shù)研究[D];南京航空航天大學(xué);2010年
,本文編號(hào):2308174
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/2308174.html