基于ANSYS有限元分析的瀝青路面車(chē)轍研究
[Abstract]:Under the condition of high temperature and heavy load, the viscoelastic-plastic behavior of asphalt mixture is very obvious. It is very important to study the permanent deformation of asphalt pavement, which can provide the corresponding support and basis for the structural design of asphalt pavement and rutting prevention measures. By using the effective finite element model to study the rutting of asphalt pavement, we can analyze the relationship between stress and strain in the process of rutting and the mechanical properties of asphalt pavement under different action factors, and provide a mechanical reference for the actual pavement condition. Firstly, on the basis of indoor Marshall test, rutting test and creep test of asphalt mixture, the rutting law of asphalt mixture is verified by simulation and comparison of elastic-plastic and viscoelastic-plastic models in ANSYS. It is found that the Creep model can effectively simulate the rutting characteristics of asphalt mixture. Secondly, compared with the literature data, the Creep model is effective to characterize the rutting of full-thickness asphalt pavement. Finally, two different asphalt pavement rutting characteristics and in-layer mechanical properties are studied under the influence of different factors. The specific research contents are as follows: 1. The Creep model in ANSYS is used to approximate the time hardening characteristics of asphalt pavement ruts. Under the condition of rectangular distribution of tire earthing pressure, the actual dynamic load is equivalent to static load by static displacement method. The rutting process of indoor asphalt mixture is simulated according to the number of loads specified in the test rules. The results show that the result of simulation is very different from that of indoor test in the early stage of loading. Rutting mainly comes from the compaction of mixture. However, with the increasing of the number of loads, the difference decreases gradually, and the two kinds of deformation laws are consistent with each other. 2. The Creep model is also used for the full-thickness asphalt pavement. The comparison shows that the rutting deformation law of the full-thickness asphalt pavement represented by the Creep model is consistent with the law given in the literature, and the simulation results are smaller than the experimental results in the literature. It is shown that the Creep model can approximate study the permanent deformation characteristics of full-thickness asphalt pavement under high temperature and heavy load. In the full thickness asphalt pavement stress-strain cloud diagram, it can be found that the vertical deformation mainly distributes in the middle area of the surface layer, and the maximum stress occurs at the center of the wheel gap acting on the wheel load. The maximum vertical deformation and surface deflection of the two kinds of asphalt pavement under different temperatures, different loads and different loading times are simulated and analyzed. The variation rules of four stress indexes in both sides of the wheel load and the pavement layer are as follows: the vertical displacement of asphalt pavement increases with the increase of temperature, the number of loads and the load level. The resistance to vertical deformation of modified asphalt pavement is better than that of matrix asphalt pavement. The distribution of road surface deflection indicates that the deflection of the road surface is the largest in the depth range of the center of the wheel load and gradually decreases to the two sides. The uplift on both sides of the wheel load increases with the increase of the number of loads, at the same time, the increase of the load level also increases the uplift, and the horizontal distance between the maximum uplift and the center of the wheel gap increases gradually. Under the condition of high temperature, the changes of the four stress indexes of the two kinds of asphalt pavement under repeated loads and different load levels are the same, and at the same time, there are obvious numerical differences. The modified asphalt pavement is more suitable for high temperature than the base asphalt pavement. The influence of heavy load condition; The shear strain first increases to the maximum peak value and then decreases gradually with the increase of the depth; the larger the load level, the greater the shear strain indexing depth, and the smaller the shear strain distribution depth of the modified asphalt pavement is when it is subjected to the same load stage.
【學(xué)位授予單位】:湖北工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類(lèi)號(hào)】:U416.217;U418.68
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李力;;高速公路瀝青路面車(chē)轍形成原因及機(jī)理分析[J];山西建筑;2010年24期
2 韓彥;;瀝青路面車(chē)轍問(wèn)題的解決措施[J];交通世界(建養(yǎng).機(jī)械);2010年12期
3 孫靜寧;朱銀濤;于明湖;賈云清;;瀝青路面車(chē)轍的預(yù)防措施[J];公路交通科技(應(yīng)用技術(shù)版);2012年09期
4 張勝芬;;南方地區(qū)瀝青路面車(chē)轍與水損害現(xiàn)象的治理措施探討[J];科技信息;2012年33期
5 王輝;黃筑強(qiáng);;形成瀝青路面車(chē)轍的影響因素分析[J];企業(yè)技術(shù)開(kāi)發(fā);2013年04期
6 張釗;趙偉;;瀝青路面車(chē)轍成因及防治對(duì)策研究[J];河南科技;2013年06期
7 王建平;;公路瀝青路面車(chē)轍的成因及防治措施[J];科技視界;2013年18期
8 鄭遠(yuǎn)東;李松波;;瀝青路面車(chē)轍成因及防治對(duì)策研究[J];河南科技;2013年22期
9 王新增,,翟站立,孫新枝;淺談瀝青路面車(chē)轍的防治措施[J];河南交通科技;1996年04期
10 邱琦;;瀝青路面車(chē)轍產(chǎn)生的原因和防止措施[J];江西建材;2014年06期
相關(guān)會(huì)議論文 前9條
1 陳洪興;楊揚(yáng);;基于路面一車(chē)輛動(dòng)載耦合作用的瀝青路面車(chē)轍計(jì)算方法研究[A];江蘇省公路學(xué)會(huì)優(yōu)秀論文集(2006-2008)[C];2009年
2 卞成娜;梅金乾;;淺析瀝青路面車(chē)轍產(chǎn)生的原因及防治措施[A];公路交通與建設(shè)論壇(2009)[C];2010年
3 吳瑞麟;石立萬(wàn);馬光華;;輕荷載大交通量對(duì)瀝青路面車(chē)轍影響的試驗(yàn)研究[A];第九次全國(guó)城市道路與交通工程學(xué)術(shù)會(huì)議論文集[C];2007年
4 趙雄偉;劉細(xì)軍;;瀝青路面車(chē)轍病害成因與防治措施[A];中國(guó)地質(zhì)學(xué)會(huì)工程地質(zhì)專(zhuān)業(yè)委員會(huì)、貴州省巖石力學(xué)與工程學(xué)會(huì)2005年學(xué)術(shù)年會(huì)暨“巖溶·工程·環(huán)境”學(xué)術(shù)論壇論文集[C];2005年
5 葉楠;魏水平;范厚彬;;瀝青路面車(chē)轍形成機(jī)理的數(shù)值模擬研究[A];和諧地球上的水工巖石力學(xué)——第三屆全國(guó)水工巖石力學(xué)學(xué)術(shù)會(huì)議論文集[C];2010年
6 樊興文;;高速公路瀝青路面車(chē)轍產(chǎn)生機(jī)理及預(yù)防措施[A];2013年4月建筑科技與管理學(xué)術(shù)交流會(huì)論文集[C];2013年
7 周建坤;王建松;虞胤;;瀝青路面車(chē)轍病害分析及處治措施[A];全國(guó)城市公路學(xué)會(huì)第二十二次學(xué)術(shù)年會(huì)論文集[C];2013年
8 郭成超;肖麗霞;樂(lè)金朝;;基于蠕變模型的軸載作用下瀝青路面車(chē)轍分析[A];力學(xué)與工程應(yīng)用[C];2012年
9 李嘉圖;N.韋拉考特;劉宗波;;利用RLWT對(duì)瀝青路面車(chē)轍現(xiàn)象的整體性評(píng)價(jià)及展望[A];2004年道路工程學(xué)術(shù)交流會(huì)論文集[C];2004年
相關(guān)博士學(xué)位論文 前1條
1 陳鳳晨;基于光纖光柵技術(shù)的瀝青路面車(chē)轍預(yù)估方法研究[D];哈爾濱工業(yè)大學(xué);2009年
相關(guān)碩士學(xué)位論文 前10條
1 汪凡;基于流變學(xué)本構(gòu)模型和動(dòng)力有限元分析的瀝青路面車(chē)轍計(jì)算[D];重慶交通大學(xué);2009年
2 楊博;基于有限元方法的瀝青路面車(chē)轍影響因素分析及其應(yīng)用研究[D];長(zhǎng)安大學(xué);2010年
3 劉威;基于非定常數(shù)伯格斯模型的瀝青路面車(chē)轍預(yù)估[D];重慶交通大學(xué);2013年
4 王寶林;城市道路瀝青路面車(chē)轍變形現(xiàn)場(chǎng)調(diào)查及數(shù)值模擬[D];浙江工業(yè)大學(xué);2012年
5 田野;云南省高速公路瀝青路面車(chē)轍力學(xué)性能研究[D];昆明理工大學(xué);2012年
6 何金龍;溫度場(chǎng)下城市瀝青路面車(chē)轍成因力學(xué)機(jī)理分析[D];中南大學(xué);2014年
7 唐娟;海南省氣候區(qū)劃和溫度場(chǎng)與瀝青路面車(chē)轍相關(guān)性研究[D];中南大學(xué);2012年
8 朱喬;基于ANSYS有限元分析的瀝青路面車(chē)轍研究[D];湖北工業(yè)大學(xué);2015年
9 徐東;基于ALF加速加載試驗(yàn)的瀝青路面車(chē)轍有限元模擬[D];長(zhǎng)安大學(xué);2010年
10 張毅;陜西省高速公路瀝青路面車(chē)轍成因及對(duì)策研究[D];長(zhǎng)安大學(xué);2004年
本文編號(hào):2296244
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/2296244.html