基于軌跡聚類的船舶異常行為識別研究
[Abstract]:Maritime traffic monitoring plays an important role in the safety of navigation. The mandatory installation of ship AIS and the establishment of coastal VTS bring great convenience to maritime supervision department, but the main way of maritime traffic monitoring is manual monitoring, which is time-consuming and laborious, and lacks pertinence. Especially in some busy ports only rely on manual monitoring is difficult to meet port security needs. In order to monitor the ship's behavior in real time and find out the abnormal behavior of the ship independently, a ship abnormal behavior identification model based on trajectory clustering is proposed. Aiming at the problem that the traditional Hausdorff distance has the problem of increasing the measurement distance under the condition of the unequal length of the measuring path and the loss of the locus point, the Hausdorff distance measurement method is optimized. The distance between the most adjacent points is improved to measure the vertical distance between the trajectory points and the nearest two points, which makes the distance measurement of ship trajectory more accurate. The new density peak clustering algorithm is applied to the navigation field and the ship trajectory is clustered. This clustering method does not need to set the parameters artificially, so it can avoid the interference of human factors. Scanning lines are set to scan each cluster of ship trajectories after clustering, and the typical ship trajectory model is obtained, and the distance, course and speed deviation between each ship trajectory and the typical ship trajectory model are calculated. According to the accuracy and false alarm rate, the optimal deviation threshold is determined. If the deviation of the ship under test exceeds the set threshold, it will be recognized as abnormal behavior, so as to achieve the effect of intelligently recognizing the abnormal behavior of the ship. The experimental results show that the proposed algorithm model can identify the abnormal behaviors of ships independently and effectively, and can detect the abnormal behaviors of ships earlier than those of the watchmen, through the verification of the cases of abnormal behaviors of ships discovered by the VTS Monitoring and Control Center of Xiamen Port, and the experimental results show that the proposed algorithm can identify the abnormal behaviors of ships. It can provide reference basis for early detection of abnormal behavior of ship by duty personnel.
【學(xué)位授予單位】:集美大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:U698
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王桂蘭;周國亮;趙洪山;米增強;;大規(guī)模用電數(shù)據(jù)流的快速聚類和異常檢測技術(shù)[J];電力系統(tǒng)自動化;2016年24期
2 康凱;王家寶;劉方鑫;;基于軌跡聚類的公共安全異常檢測[J];計算機工程與應(yīng)用;2016年14期
3 逄琳;劉方愛;;基于層次劃分的密度優(yōu)化聚類算法[J];計算機應(yīng)用;2016年06期
4 廖律超;蔣新華;鄒復(fù)民;李璐明;賴宏圖;;浮動車軌跡數(shù)據(jù)聚類的有向密度方法[J];地球信息科學(xué)學(xué)報;2015年10期
5 肖瀟;邵哲平;潘家財;紀(jì)賢標(biāo);;基于AIS信息的船舶軌跡聚類模型及應(yīng)用[J];中國航海;2015年02期
6 韓俊;談健;黃河;喬黎偉;;基于改進(jìn)K-means聚類算法的供電塊劃分方法[J];電力自動化設(shè)備;2015年06期
7 甄榮;邵哲平;潘家財;趙強;;基于統(tǒng)計學(xué)理論的船舶軌跡異常識別[J];集美大學(xué)學(xué)報(自然科學(xué)版);2015年03期
8 陸云飛;陳臨強;;基于SOM的行人異常軌跡檢測[J];杭州電子科技大學(xué)學(xué)報(自然科學(xué)版);2015年02期
9 吉根林;趙斌;;面向大數(shù)據(jù)的時空數(shù)據(jù)挖掘綜述[J];南京師大學(xué)報(自然科學(xué)版);2014年01期
10 許倩;程東年;;基于層次聚類的網(wǎng)絡(luò)流量異常分類算法[J];計算機工程;2012年23期
相關(guān)碩士學(xué)位論文 前5條
1 姬威;數(shù)據(jù)流聚類分析及其異常檢測方法研究[D];北京化工大學(xué);2015年
2 肖瀟;基于AIS信息的船舶軌跡聚類模型研究[D];集美大學(xué);2015年
3 甄榮;基于AIS信息的港口水域船舶異常行為識別研究[D];集美大學(xué);2015年
4 張海濤;移動對象軌跡異常和關(guān)聯(lián)模式的挖掘[D];南京航空航天大學(xué);2014年
5 邱洪生;基于卡爾曼濾波的船舶航行軌跡異常行為預(yù)測算法研究[D];河北工業(yè)大學(xué);2012年
,本文編號:2264617
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/2264617.html