第三系砂泥巖地層隧道施工安全及對(duì)策研究
[Abstract]:With the development of national economy and the progress of society, the construction of highway and railway is in the ascendant, so the number of tunnels passing through the Tertiary sand and mudstone strata increases sharply, and its length, cross-section area and buried depth are also increasing. Tunnel construction safety problem is more and more prominent. Whether to the country or the enterprise, the construction safety is always vital. The safety of tunnel construction in sand and mudstone strata is a hot issue in tunnel construction safety both at home and abroad. At present, the overall research level can not meet the construction needs. There are a lot of sand and mudstone stratum tunnels under construction in our country at present, which is helpful to carry out the research and summary of its construction safety and countermeasures. Based on the engineering example of Shuangfeng Tunnel in Musui Line, this paper analyzes and predicts the potential safety hazards, and uses Midas GTS finite element analysis software to carry out the construction simulation, and compares and analyzes the different conditions. The potential safety risks of the tunnel and the countermeasures that should be paid attention to are given. The main conclusions are as follows: (1) through the simulation of tunnel construction process under sand and mudstone geological conditions, the results show that when the first principal stress of surrounding rock is -0.61MPa, the maximum of the third principal stress of surrounding rock is -1.26MPa when the first principal stress of surrounding rock is excavated by using the CD method, The maximum value of the first principal stress of surrounding rock is -0.52MPa, the maximum of the third principal stress of surrounding rock is -1.05MPa, and the maximum value of the first principal stress of surrounding rock is -0.34MPa, and the maximum value of the third principal stress of surrounding rock is -0.68MPa.2 when the three-step excavation method is adopted. The maximum displacement along X direction is 18.5 cm, and the maximum settlement and uplift along Y direction are 16.2cm and 19.0cmrespectively. The maximum displacement along X direction is 15.9 cm, and the maximum settlement and uplift along Y direction are 11.4cm and 14.2 cm. The maximum displacement along X direction is 8.6 cm, and the maximum settlement and uplift along Y direction are 8.1cm and 8.7 cm 路(2) arch. However, the arch is subjected to settlement deformation under the vertical load of surrounding rock. Therefore, the horizontal displacement and vertical settlement of surrounding rock can be controlled by means of strengthening foot locking measures to ensure the safety of construction. (3) the surrounding rock pressure on the right side of the tunnel is basically larger than that on the left side, showing asymmetry, and the lateral pressure of the mountain body is very large. The confining pressure of each measuring point has an increasing tendency. (4) the current maximum stress of steel arch frame occurs at the right arch waist, which is -400.32 MPa, and the measured value of the left and right side is asymmetric, which indicates that the tunnel may be affected by bias pressure, which should be paid attention to in construction. When the steel arch frame is closed, the stress of each observation point is further optimized, the asymmetry decreases gradually, the influence of bias decreases gradually, and the points tend to be stable. (5) the initial contact pressure between the initial support and the second liner increases greatly. The main reason is that the excavation of the front face has a great disturbance to it; then the contact pressure decreases because of the shrinkage and creep of concrete; with the completion of the secondary lining, the contact pressure tends to stabilize gradually. (6) the concrete stress is mostly in the state of compression. The fluctuation in the early stage is mainly caused by the change of the strength of concrete hardening, and then the concrete stress decreases slowly. The main reason is that the secondary lining is completed to form a common force. (7) the secondary lining steel bars are in different stress states, the inner steel bars are mostly in the tensile state, and the outer steel bars are mostly in the state of compression. The small change in the early stage is mainly related to the uneven hardening force of the concrete, and then due to the completion of the second lining, the stress of the reinforcement gradually increases, and the secondary lining begins to bear the deformation of surrounding rock.
【學(xué)位授予單位】:蘭州交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:U455
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張玉萍;張明;;國(guó)內(nèi)外圍巖大變形研究現(xiàn)狀[J];新疆有色金屬;2013年05期
2 鄒太平;;改善隧道注漿工藝促使圍巖成環(huán)的重要性[J];公路交通科技(應(yīng)用技術(shù)版);2013年11期
3 彭正勇;;三重管旋噴注漿技術(shù)在隧道圍巖加固中的應(yīng)用[J];地下空間與工程學(xué)報(bào);2010年06期
4 石宇峰;;隧道圍巖加固及換拱施工技術(shù)[J];科技創(chuàng)新與應(yīng)用;2013年06期
5 程榮;;武廣客運(yùn)尖峰頂隧道特種圍巖袖閥管化學(xué)注漿技術(shù)[J];鐵道建筑技術(shù);2010年02期
6 朱亮明;;膨脹性圍巖隧道施工技術(shù)[J];鐵道建筑技術(shù);2010年11期
7 張玉浩;;照壁山隧道出口碎屑流地層圍巖加固處理技術(shù)[J];山西建筑;2014年04期
8 赫愛(ài)敏;;隧道圍巖加固技術(shù)[J];青海交通科技;2010年01期
9 陳廣柏,龐文林;淺埋富水特軟圍巖隧道施工技術(shù)[J];西部探礦工程;2003年04期
10 闕壽洪;;高壓旋噴樁在隧道圍巖加固中的應(yīng)用[J];公路交通技術(shù);2009年02期
相關(guān)會(huì)議論文 前6條
1 吉小明;白世偉;;軟巖土隧道施工中圍巖力學(xué)特性的探討[A];新世紀(jì)巖石力學(xué)與工程的開拓和發(fā)展——中國(guó)巖石力學(xué)與工程學(xué)會(huì)第六次學(xué)術(shù)大會(huì)論文集[C];2000年
2 周海亮;王叢泉;;水平互層圍巖隧道施工技術(shù)[A];第三屆全國(guó)地下、水下工程技術(shù)交流會(huì)論文集[C];2013年
3 李鳳儀;孫久政;王維維;于超;;深埋煤層開采巷道圍巖災(zāi)變及其致災(zāi)機(jī)理分析[A];中國(guó)軟巖工程與深部災(zāi)害控制研究進(jìn)展——第四屆深部巖體力學(xué)與工程災(zāi)害控制學(xué)術(shù)研討會(huì)暨中國(guó)礦業(yè)大學(xué)(北京)百年校慶學(xué)術(shù)會(huì)議論文集[C];2009年
4 李英;崔京浩;;噴錨技術(shù)應(yīng)用中的若干問(wèn)題[A];第二屆全國(guó)結(jié)構(gòu)工程學(xué)術(shù)會(huì)議論文集(下)[C];1993年
5 高全臣;翁麗婭;岳德金;譚寶峰;;巷道圍巖的爆破損傷與支護(hù)對(duì)策研究[A];礦山建設(shè)工程新進(jìn)展——2005全國(guó)礦山建設(shè)學(xué)術(shù)會(huì)議文集(下冊(cè))[C];2005年
6 鄧青力;;敞開式TBM掘進(jìn)過(guò)節(jié)理密集帶施工技術(shù)[A];2012年中鐵隧道集團(tuán)低碳環(huán)保優(yōu)質(zhì)工程修建技術(shù)專題交流會(huì)論文集[C];2012年
相關(guān)重要報(bào)紙文章 前2條
1 本報(bào)通訊員 馬軍萍 高軍英;白龍江畔寫傳奇[N];甘肅經(jīng)濟(jì)日?qǐng)?bào);2012年
2 周新民 李佩山;東風(fēng)朔黃抖風(fēng)流[N];中國(guó)鐵道建筑報(bào);2000年
相關(guān)博士學(xué)位論文 前3條
1 張金松;深部巷道局部弱支護(hù)效應(yīng)分析與圍巖控制技術(shù)研究[D];安徽理工大學(xué);2015年
2 李奎;水平層狀隧道圍巖壓力拱理論研究[D];西南交通大學(xué);2010年
3 郭富利;堡鎮(zhèn)軟巖隧道大變形機(jī)理及控制技術(shù)研究[D];北京交通大學(xué);2010年
相關(guān)碩士學(xué)位論文 前10條
1 毛燕飛;基于巖土控制變形分析法的軟弱圍巖隧道開挖變形控制技術(shù)[D];長(zhǎng)安大學(xué);2015年
2 竇楊;軟弱圍巖大變形機(jī)理與防治措施研究[D];成都理工大學(xué);2013年
3 周關(guān)藝;長(zhǎng)沙市營(yíng)盤路湘江隧道圍巖穩(wěn)定性分析與評(píng)價(jià)[D];湖南科技大學(xué);2015年
4 李國(guó)彬;第三系砂泥巖地層隧道施工安全及對(duì)策研究[D];蘭州交通大學(xué);2015年
5 柴柏龍;公路隧道軟弱破碎帶圍巖—支護(hù)結(jié)構(gòu)穩(wěn)定性分析[D];重慶大學(xué);2009年
6 李岳;大變形隧道長(zhǎng)短組合錨桿支護(hù)技術(shù)研究[D];西安科技大學(xué);2012年
7 陳玉;共和隧道圍巖大變形機(jī)制及防治措施研究[D];重慶大學(xué);2008年
8 肖翔;吊溝嶺隧道軟巖施工方法研究[D];西南交通大學(xué);2008年
9 張青林;重慶地鐵隧道TBM始發(fā)段的施工技術(shù)研究[D];北京交通大學(xué);2011年
10 張超;青海“引大濟(jì)湟”工程TBM卡機(jī)段圍巖大變形特性及擴(kuò)挖洞室支護(hù)方案研究[D];成都理工大學(xué);2012年
,本文編號(hào):2238974
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/2238974.html