豎向荷載作用下小間距摩擦型群樁基礎(chǔ)承載特性分析
[Abstract]:With the rapid economic development, in order to improve the transportation and travel problems of the second and third tier cities, especially in northwest Yunnan, the state has invested a large amount of money in the construction of highways, which is conducive to promoting the development of tourism in northwest Yunnan. Promote the border region to achieve leapfrog development and build a well-off society. In engineering practice, the group pile spacing is often too small, and the traditional theoretical analysis and indoor test obviously lag behind the demand of engineering practice. Therefore, while ensuring the safety of bridge engineering and giving full play to the bearing capacity of pile groups, it is necessary to deeply study the bearing behavior of small spacing pile groups. Based on the analysis of indoor tests and theoretical calculations at home and abroad, the vertical bearing characteristics of small spacing pile groups in a bridge project in Yunnan Province are analyzed by establishing a finite element three-dimensional numerical model. The main research work and results are as follows: (1) based on the reference of the domestic and foreign pile group foundation, the method of calculating the bearing capacity, settlement and effective pile length of single pile group is introduced. The advantages and disadvantages of several classical calculation methods are compared and analyzed. On this basis, the pile group effect coefficient method and limit equilibrium method are adopted for pile group bearing capacity, and the stratified summation method is used for pile group settlement. The effective pile length is calculated by means of pile top settlement control method. (2) the applicability of finite element software in geotechnical engineering is analyzed briefly. In this paper, the modeling steps of Abaqus numerical simulation software and the selection of material constitutive model are briefly described. The pile body adopts linear elastic model, the soil body adopts Moore Coulomb model, the interaction adopts friction contact, and the tangential behavior adopts penalty function. (3) Abaqus finite element software is used to simulate the pile group foundation with small spacing and low cap, and the different pile spacing, pile length and pile number are discussed. The influence of pile diameter and other working conditions on the vertical bearing behavior of pile group is analyzed, and the effect coefficient of pile group under different pile-spacing conditions is compared and analyzed by numerical calculation and theoretical calculation. Through the analysis of load-settlement curve, it is concluded that the settlement of pile group under different working conditions is not different when the vertical load is small, and when the vertical load increases, the settlement of pile spacing changes from large to small under 2d-6d condition. When the pile length increases from 50 m to 80 m, the vertical bearing capacity of pile group increases gradually, the settlement deformation decreases gradually, but the pile length increases to a certain extent, and the variation range of bearing capacity and settlement of pile group is lower, which increases with the number of piles. The load-settlement curve varies greatly, but when the pile number increases to a certain amount, the settlement decreases steadily. There is no significant difference in the effect coefficient of pile group between the numerical calculation and the theoretical calculation under different pile-spacing conditions. The feasibility of numerical simulation is verified. (4) pile group effect coefficient method and limit equilibrium method are used to calculate the vertical bearing capacity of pile group respectively, and the results are compared and analyzed. The applicability of the effect coefficient of pile group calculated by finite element method is verified, and the rationality of pile group design is obtained by theoretical calculation and numerical calculation of effective pile length for pile group settlement of relying engineering.
【學(xué)位授予單位】:長(zhǎng)安大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:U443.15
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 孔綱強(qiáng);顧紅偉;周立朵;彭懷風(fēng);;低承臺(tái)擴(kuò)底楔形樁群樁效應(yīng)系數(shù)研究[J];巖土力學(xué);2016年S2期
2 李鏡培;姚明博;姚建平;;群樁等沉降臨界樁長(zhǎng)關(guān)系解析[J];中國(guó)公路學(xué)報(bào);2016年06期
3 林智勇;戴自航;;由單樁載荷試驗(yàn)推算群樁沉降的相互作用系數(shù)法[J];巖土工程學(xué)報(bào);2016年01期
4 林群仙;李少和;;鉆孔灌注樁注漿群樁的承載力分析[J];科技通報(bào);2015年07期
5 戴國(guó)亮;戴永興;茅燕兵;龔維明;李小娟;;軟土群樁原位足尺試驗(yàn)研究[J];巖土工程學(xué)報(bào);2015年S2期
6 杜思義;石磊;;豎向荷載下群樁受力特性研究[J];鄭州大學(xué)學(xué)報(bào)(工學(xué)版);2015年04期
7 杜家慶;杜守繼;趙丹蕾;唐文勇;;豎向荷載下群樁-土-承臺(tái)相互作用數(shù)值分析[J];巖土力學(xué);2013年08期
8 李海元;王成華;;不同樁距超長(zhǎng)群樁承載特性的有限元分析[J];建筑技術(shù)開發(fā);2013年05期
9 楊明輝;單華峰;張小威;;深厚軟土區(qū)超長(zhǎng)群樁有效樁長(zhǎng)確定方法[J];中國(guó)公路學(xué)報(bào);2013年01期
10 聶珊利;;尖點(diǎn)突變理論求解摩擦樁豎向極限承載力的可行性[J];現(xiàn)代物業(yè)(上旬刊);2012年08期
相關(guān)博士學(xué)位論文 前1條
1 方鵬飛;超長(zhǎng)樁承載性狀研究[D];浙江大學(xué);2003年
相關(guān)碩士學(xué)位論文 前10條
1 吳小濤;基于ABAQUS的剛—柔性樁復(fù)合地基有限元分析[D];太原理工大學(xué);2016年
2 宋碧亞;基于ABAQUS的沉樁過程數(shù)值分析[D];遼寧工業(yè)大學(xué);2016年
3 孔滔;軟土地區(qū)主動(dòng)受荷下橋梁群樁基礎(chǔ)樁土相互作用研究[D];西南交通大學(xué);2014年
4 張泉鈺;長(zhǎng)短樁復(fù)合地基的ABAQUS分析及優(yōu)化思路[D];西安工業(yè)大學(xué);2014年
5 石磊;豎向荷載下群樁承載力及變形研究[D];鄭州大學(xué);2014年
6 張海超;豎向荷載下群樁基礎(chǔ)承載性能試驗(yàn)及數(shù)值模擬研究[D];蘭州交通大學(xué);2014年
7 劉前瑞;高速鐵路中橋梁群樁基礎(chǔ)沉降研究[D];武漢理工大學(xué);2014年
8 崔森;豎向荷載作用下群樁效應(yīng)分析及數(shù)值模擬研究[D];遼寧工程技術(shù)大學(xué);2013年
9 單華峰;考慮群樁效應(yīng)的超長(zhǎng)群樁有效樁長(zhǎng)計(jì)算方法研究[D];湖南大學(xué);2013年
10 王佳敏;高速鐵路標(biāo)準(zhǔn)梁橋樁基有限元分析及有效樁長(zhǎng)探討[D];西南交通大學(xué);2013年
,本文編號(hào):2233027
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/2233027.html