南昌市短時(shí)交通流預(yù)測(cè)方法研究
[Abstract]:Traffic flow prediction is an important part of intelligent transportation system. The important premise of traffic signal control, route guidance and accident detection is fast and accurate short-time traffic flow prediction. However, the traffic system has the characteristics of high complexity, nonlinearity and uncertainty. It is a complex system composed of people, cars, roads and other objects, making real-time traffic flow. Accurate prediction is one of the hotspots and difficulties in the field of intelligent transportation. However, because of the large amount of traffic flow information, the strong disturbance of uncertain noise signal and the complex topology of urban road network, how to realize the short-term traffic flow prediction of urban road has been hindering the long-term development of intelligent transportation. In order to solve these problems, many forecasting methods have been put forward, but the real-time and accuracy of the prediction results are not ideal because of not considering the influence of uncertain interference signals or the complexity of urban road network on the short-term traffic flow. In this paper, Mallat algorithm is used to decompose and reconstruct the short time traffic flow signal with wavelet transform in order to filter out the strong interference noise signal of the short time traffic flow. This method can improve the speed and precision of the short time traffic flow information preprocessing. In view of the complexity and nonlinear characteristics of traffic flow data, the neural network theory is introduced in this paper. It is an effective method to predict traffic flow in short time by using its good ability to deal with nonlinear problems. In summary, in order to improve the accuracy of short-term traffic flow prediction, in view of the time-varying, complex and nonlinear characteristics of urban road traffic flow, This paper presents a short-term traffic flow combination prediction model based on wavelet denoising and adaptive genetic algorithm to optimize BP neural network. Using wavelet transform, traffic flow can be decomposed into multiple smooth subsequences with different frequencies, and each subsequence can be predicted separately. This method can effectively solve the time-varying, complex and nonlinear problems of the predicted traffic flow. At the same time, the adaptive genetic algorithm has the ability of global searching, and it can solve the defect of neural network, which is easy to fall into the local minimum. The prediction results are compared with those of wavelet neural network method and genetic neural network method. The results show that the average absolute error, mean absolute percentage error and root mean square error of the model are small, and the EC value of the fitting degree is large, which shows the validity of the model in the short-term traffic flow prediction. Accuracy.
【學(xué)位授予單位】:華東交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:U491.14
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 沈國(guó)江;王嘯虎;孔祥杰;;短時(shí)交通流量智能組合預(yù)測(cè)模型及應(yīng)用[J];系統(tǒng)工程理論與實(shí)踐;2011年03期
2 張國(guó)強(qiáng);彭曉明;;自適應(yīng)遺傳算法的改進(jìn)與應(yīng)用[J];艦船電子工程;2010年01期
3 陳岳明;蕭德云;;基于動(dòng)態(tài)交通分配的路網(wǎng)應(yīng)急疏散模型[J];清華大學(xué)學(xué)報(bào)(自然科學(xué)版);2009年08期
4 孫湘海;劉潭秋;;基于神經(jīng)網(wǎng)絡(luò)和SARIMA組合模型的短期交通流預(yù)測(cè)[J];交通運(yùn)輸系統(tǒng)工程與信息;2008年05期
5 聶佩林;余志;何兆成;;基于約束卡爾曼濾波的短時(shí)交通流量組合預(yù)測(cè)模型[J];交通運(yùn)輸工程學(xué)報(bào);2008年05期
6 張玉梅;曲仕茹;溫凱歌;;基于混沌和RBF神經(jīng)網(wǎng)絡(luò)的短時(shí)交通流量預(yù)測(cè)[J];系統(tǒng)工程;2007年11期
7 張梁斌;周必水;奚李峰;;自適應(yīng)遺傳算法與分形圖像壓縮結(jié)合的新方法[J];計(jì)算機(jī)應(yīng)用研究;2006年07期
8 劉學(xué)鋒;劉聯(lián)會(huì);;圖像Mallat算法邊界延拓問(wèn)題的研究[J];現(xiàn)代電子技術(shù);2006年09期
9 王曉原;劉海紅;;基于投影尋蹤自回歸的短時(shí)交通流預(yù)測(cè)[J];系統(tǒng)工程;2006年03期
10 任子武;傘冶;;自適應(yīng)遺傳算法的改進(jìn)及在系統(tǒng)辨識(shí)中應(yīng)用研究[J];系統(tǒng)仿真學(xué)報(bào);2006年01期
相關(guān)博士學(xué)位論文 前4條
1 許小可;基于非線性分析的海雜波處理與目標(biāo)檢測(cè)[D];大連海事大學(xué);2008年
2 姚智勝;基于實(shí)時(shí)數(shù)據(jù)的道路網(wǎng)短時(shí)交通流預(yù)測(cè)理論與方法研究[D];北京交通大學(xué);2007年
3 李星毅;基于相似性的交通流分析方法[D];北京交通大學(xué);2010年
4 陳柳;小波分析和神經(jīng)網(wǎng)絡(luò)應(yīng)用于大氣污染預(yù)測(cè)的研究[D];西安建筑科技大學(xué);2006年
相關(guān)碩士學(xué)位論文 前4條
1 胡楓;基于馬爾科夫模型的短時(shí)交通流預(yù)測(cè)研究[D];南京郵電大學(xué);2013年
2 雷旭東;基于自適應(yīng)神經(jīng)網(wǎng)絡(luò)的車(chē)室噪聲主動(dòng)控制系統(tǒng)研究[D];重慶交通大學(xué);2012年
3 丁蕾;面向城市交通控制的短時(shí)交通流預(yù)測(cè)方法研究[D];大連理工大學(xué);2009年
4 吳浩勇;城市快速路交通參數(shù)預(yù)測(cè)方法研究[D];吉林大學(xué);2005年
,本文編號(hào):2201840
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/2201840.html