城市交通流短時(shí)預(yù)測模型研究
[Abstract]:With the improvement of economic level, the reduction of family burden and the increasing purchase of private cars, traffic congestion is a major transportation problem that puzzles China and even the international community. How to relieve the pressure of traffic becomes an urgent problem to be solved in our country. Obtaining real-time and accurate traffic flow is the basis of traffic guidance and control, and the key to solve various traffic problems. Firstly, based on the analysis of the current situation of short-term traffic flow prediction at home and abroad, the characteristics of urban traffic flow are analyzed, and the existing forecasting methods are summarized. A simulation model of Kalman filter traffic flow prediction based on phase space reconstruction is proposed. In order to obtain the characteristics hidden in the one-dimensional time series of short-time traffic flow, the one-dimensional time series is reconstructed, and the delay time and embedding dimension of the spatial reconstruction are determined by using CnC algorithm. The phase points obtained by phase space reconstruction are used to describe the state space which is composed of state vectors, and then the prediction of the next moment of the measured data and the correction of the future development law of the phase points are carried out based on the Kalman filter theory. On the basis of these two theories, the short-term traffic flow prediction model is established, and the simulation is carried out according to the actual traffic situation of a certain section of the road. Secondly, the support vector machine (SVM) SVM theory is studied and analyzed in detail, and the kernel function is determined according to the prediction object in this paper. The wavelet denoising theory is introduced before the data training to overcome the shortcomings of the method, according to the characteristics of several kinds of wavelets. In order to improve the accuracy of prediction, the SVM prediction model based on parameter optimization is constructed in order to improve the accuracy of prediction and optimize the parameters of the model by means of ant colony optimization algorithm. The availability and practicability of the algorithm are verified by simulation and analysis of actual traffic flow. Finally, in order to compare and analyze, the constructed Kalman filter traffic flow prediction simulation model based on phase space reconstruction and the SVM short-time traffic flow prediction model based on parameter optimization are simulated. The simulation results show that the parameter optimization SVM model based on intelligent algorithm can improve the prediction accuracy of traffic flow more effectively. It is proved that this intelligent combination algorithm can achieve better prediction results.
【學(xué)位授予單位】:河南理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:U491.14;TP18
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 偶昌寶,俞亞南;短時(shí)交通流預(yù)測的多層遞階方法[J];城市道橋與防洪;2004年05期
2 高麗梅;高鵬;陳俊波;;數(shù)據(jù)融合技術(shù)在短時(shí)交通流預(yù)測中的應(yīng)用[J];交通科技;2010年S1期
3 唐世星;;改進(jìn)的支持向量機(jī)算法在短時(shí)交通流預(yù)測中的應(yīng)用[J];承德石油高等專科學(xué)校學(xué)報(bào);2012年01期
4 王嬌;李軍;;最小最大概率回歸機(jī)在短時(shí)交通流預(yù)測中的應(yīng)用[J];公路交通科技;2014年02期
5 賀國光,李宇,馬壽峰;基于數(shù)學(xué)模型的短時(shí)交通流預(yù)測方法探討[J];系統(tǒng)工程理論與實(shí)踐;2000年12期
6 宗春光,宋靖雁,任江濤,胡堅(jiān)明;基于相空間重構(gòu)的短時(shí)交通流預(yù)測研究[J];公路交通科技;2003年04期
7 楊世堅(jiān),賀國光;基于模糊C均值聚類和神經(jīng)網(wǎng)絡(luò)的短時(shí)交通流預(yù)測方法[J];系統(tǒng)工程;2004年08期
8 王進(jìn);史其信;;短時(shí)交通流預(yù)測模型綜述[J];中國公共安全(學(xué)術(shù)卷);2005年01期
9 楊芳明;朱順應(yīng);;基于小波的短時(shí)交通流預(yù)測[J];重慶交通學(xué)院學(xué)報(bào);2006年03期
10 鄧志龍;李全;陳茜;;基于灰色系統(tǒng)理論的短時(shí)交通流預(yù)測[J];公路交通技術(shù);2006年01期
相關(guān)會(huì)議論文 前4條
1 鄭德署;何世偉;許旺土;;分形理論在短時(shí)交通流預(yù)測中的應(yīng)用[A];2008第四屆中國智能交通年會(huì)論文集[C];2008年
2 唐麗娜;張衛(wèi)華;;短時(shí)交通流預(yù)測方法的比較研究[A];2007第三屆中國智能交通年會(huì)論文集[C];2007年
3 于建玲;商朋見;關(guān)積珍;;改進(jìn)的相空間重構(gòu)方法在短時(shí)交通流預(yù)測中的應(yīng)用[A];2008第四屆中國智能交通年會(huì)論文集[C];2008年
4 楊錦偉;肖新平;郭金海;;基于灰關(guān)聯(lián)與少數(shù)據(jù)云推理的短時(shí)交通流預(yù)測[A];第25屆全國灰色系統(tǒng)會(huì)議論文集[C];2014年
相關(guān)博士學(xué)位論文 前1條
1 姚智勝;基于實(shí)時(shí)數(shù)據(jù)的道路網(wǎng)短時(shí)交通流預(yù)測理論與方法研究[D];北京交通大學(xué);2007年
相關(guān)碩士學(xué)位論文 前10條
1 高為;基于數(shù)據(jù)挖掘和數(shù)據(jù)融合的短時(shí)交通流預(yù)測研究[D];重慶交通大學(xué);2011年
2 齊霖;基于支持向量機(jī)回歸的短時(shí)交通流預(yù)測與系統(tǒng)實(shí)現(xiàn)[D];東北大學(xué);2013年
3 邱世崇;基于時(shí)空特性的城市道路短時(shí)交通流預(yù)測研究[D];重慶交通大學(xué);2015年
4 沈小峰;交通流量短時(shí)預(yù)測的算法研究[D];浙江工業(yè)大學(xué);2015年
5 江小燕;短時(shí)交通流預(yù)測方法研究[D];揚(yáng)州大學(xué);2015年
6 楊慧慧;城市交通流短時(shí)預(yù)測模型研究[D];河南理工大學(xué);2015年
7 尹振興;“機(jī)理+辨識(shí)”策略在短時(shí)交通流預(yù)測中多種結(jié)果合成[D];天津大學(xué);2008年
8 姜敏華;基于車行轉(zhuǎn)彎比例穩(wěn)定假設(shè)的短時(shí)交通流預(yù)測[D];上海交通大學(xué);2008年
9 張蕊;城市道路短時(shí)交通流預(yù)測[D];五邑大學(xué);2008年
10 韓超;短時(shí)交通流預(yù)測的研究[D];北方工業(yè)大學(xué);2012年
,本文編號(hào):2162600
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/2162600.html