天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > 路橋論文 >

高墩大跨預(yù)應(yīng)力混凝土連續(xù)剛構(gòu)橋施工控制研究

發(fā)布時(shí)間:2018-07-17 17:06
【摘要】:高墩大跨連續(xù)剛構(gòu)橋是一種重要的橋梁形式,一般采用懸臂施工法進(jìn)行施工。三水河特大橋?yàn)橄剃?yáng)至旬邑高速公路上的一座特大型連續(xù)剛構(gòu)橋,它集超高墩、長(zhǎng)聯(lián)、大跨特征于一身,本文依托該橋梁結(jié)構(gòu)的施工建造,深入現(xiàn)場(chǎng)進(jìn)行實(shí)時(shí)施工監(jiān)測(cè),并根據(jù)所凝練的相關(guān)問題,對(duì)比研究了大量國(guó)內(nèi)、外有關(guān)預(yù)應(yīng)力混凝土連續(xù)剛構(gòu)橋的監(jiān)控資料,利用MIDAS/Civil有限元軟件建立數(shù)值模擬模型,對(duì)該橋梁箱梁梁段的建造、全橋的合龍施工進(jìn)行了全過(guò)程的監(jiān)控。結(jié)果表明:采用懸臂施工法修建的三水河特大橋滿足規(guī)范《公路橋涵設(shè)計(jì)通用規(guī)范》JTG D600-2004和《公路鋼筋混凝土及預(yù)應(yīng)力混凝土橋涵設(shè)計(jì)規(guī)范》JTG D62-2012要求。具體工作如下:闡述了橋梁施工監(jiān)測(cè)與控制的基本原理,簡(jiǎn)要評(píng)論了目前國(guó)內(nèi)外高墩大跨預(yù)應(yīng)力混凝土連續(xù)剛構(gòu)橋施工監(jiān)測(cè)技術(shù)發(fā)展的歷史與現(xiàn)狀。運(yùn)用MIDAS/Civil軟件建立數(shù)值模擬模型,對(duì)該橋梁結(jié)構(gòu)進(jìn)行施工控制方面的仿真模擬。求出相應(yīng)的應(yīng)力值和撓度值,并與實(shí)測(cè)的施工監(jiān)測(cè)數(shù)據(jù)對(duì)比以修正相關(guān)的模型參數(shù),使之與實(shí)際相符,為該種橋梁結(jié)構(gòu)的施工控制提供了理論計(jì)算基礎(chǔ);谑┕み^(guò)程中箱梁的高程變化數(shù)據(jù),運(yùn)用MIDAS有限元模型對(duì)數(shù)據(jù)進(jìn)行參數(shù)識(shí)別、分析,繼而為下一梁段箱梁的立模標(biāo)高提供修正依據(jù),以指導(dǎo)施工、建造,結(jié)果表明:成橋后梁底線形良好,符合設(shè)計(jì)要求。為保證箱梁梁體結(jié)構(gòu)材料不發(fā)生破壞,對(duì)箱梁截面12#墩2#塊所采集的應(yīng)力數(shù)據(jù)進(jìn)行分析,實(shí)測(cè)最大壓應(yīng)力值滿足規(guī)范要求。結(jié)果表明:該梁段在各施工階段的應(yīng)力狀態(tài)均滿足設(shè)計(jì)要求。在日照產(chǎn)生的溫度梯度荷載條件下,頂板和底板分別受到壓應(yīng)力和拉應(yīng)力的作用,最大應(yīng)力值位于跨中位置。經(jīng)軟件模擬計(jì)算,荷載工況組合下(含溫度梯度荷載),頂板和底板受到的最大壓應(yīng)力分別為11.4MPa和12.9MPa;12#墩10#塊頂板和底板在下午3時(shí)受到的最壓應(yīng)力實(shí)測(cè)值分別為12.84MPa和8.52MPa,均滿足規(guī)范要求。溫度應(yīng)力對(duì)橋梁產(chǎn)生向下的撓度,跨中撓度值為21.7mm。對(duì)咸陽(yáng)地區(qū)該類型橋梁箱梁的合理溫度梯度進(jìn)行了研究:通過(guò)對(duì)該橋梁箱梁進(jìn)行24小時(shí)的溫度監(jiān)控,基于經(jīng)典熱力學(xué)理論,建立ANSYS模型,運(yùn)用瞬態(tài)熱分析,求出了該橋梁夏季日最不利時(shí)刻(15:00)的理論溫度場(chǎng);并將有關(guān)溫度的理論計(jì)算值與實(shí)測(cè)溫度值進(jìn)行對(duì)比,修正、優(yōu)化計(jì)算模型,遂得出適合該地區(qū)夏季的混凝土箱梁溫度場(chǎng)分布圖;與國(guó)內(nèi)、外相關(guān)的公路規(guī)范對(duì)比,結(jié)果證明該溫度梯度數(shù)值模擬模型較為合理。對(duì)橋梁合龍施工過(guò)程進(jìn)行了理論分析:對(duì)梁段高程,應(yīng)力應(yīng)變,溫度場(chǎng)進(jìn)行實(shí)時(shí)監(jiān)控;在合龍完成后,通過(guò)有限元軟件進(jìn)行分析、驗(yàn)證,結(jié)果表明理論計(jì)算精度達(dá)到預(yù)期要求。
[Abstract]:Long span continuous rigid frame bridge with high piers is an important bridge form, which is usually constructed by cantilever construction method. Sanshuihe River Bridge is a super large continuous rigid frame bridge on Xianyang Xunyi Expressway. It combines the features of super high pier, long joint and long span. This paper relies on the construction of the bridge structure to carry out real-time construction monitoring on the spot. According to the condensed problems, the monitoring data of prestressed concrete continuous rigid frame bridge at home and abroad are compared and studied, and the numerical simulation model is established by using Midas / Civil finite element software to construct the box girder section of the bridge. The whole construction of the bridge is monitored and controlled. The results show that the Sanshuihe Bridge constructed by cantilever construction method meets the requirements of the Code < General Design Code of Highway Bridge and culvert > JTG D600-2004 and the Design Code of Highway reinforced concrete and Prestressed concrete Bridge and culvert > JTG D62-2012. The main work is as follows: the basic principle of bridge construction monitoring and control is expounded, and the history and present situation of construction monitoring technology of prestressed concrete continuous rigid frame bridge with high pier and large span are briefly reviewed. A numerical simulation model is established by using Midas / Civil software to simulate the construction control of the bridge structure. The corresponding stress and deflection values are obtained and compared with the measured construction monitoring data to modify the relevant model parameters to make them accord with the actual conditions. This provides a theoretical calculation basis for the construction control of this kind of bridge structure. Based on the elevation variation data of the box girder during construction, the data are identified and analyzed by Midas finite element model, and then the correction basis for the elevation of the next section of box girder is provided to guide the construction and construction. The results show that the bottom line shape of the bridge is good and meets the design requirements. In order to ensure that the structure material of box girder is not destroyed, the stress data collected from section 12 # pier block of box girder are analyzed, and the measured maximum compressive stress value meets the requirements of the code. The results show that the stress state of the section meets the design requirements. Under the condition of temperature gradient load caused by sunlight, the roof and floor are subjected to compressive stress and tensile stress respectively, and the maximum stress is located in the middle of span. Through the software simulation calculation, The maximum compressive stress of roof and floor is 11.4MPa and 12.9MPA / 12# respectively under load condition combination (including temperature gradient load). The measured values of maximum compressive stress of 10# roof and floor are 12.84MPa and 8.52MPa, respectively, which meet the requirements of code. The temperature stress has a downward deflection to the bridge, and the mid-span deflection is 21.7mm. The reasonable temperature gradient of this type of bridge box girder in Xianyang area is studied. By monitoring the temperature of the bridge box girder for 24 hours, based on the classical thermodynamics theory, the ANSYS model is established, and the transient thermal analysis is used. The theoretical temperature field at the most unfavorable day (15:00) of the bridge in summer is obtained, and the theoretical calculation value of the temperature is compared with the measured temperature value, and the calculation model is modified and optimized. The distribution map of temperature field of concrete box girder in summer is obtained, and the numerical simulation model of temperature gradient is proved to be more reasonable compared with the relevant highway codes at home and abroad. The construction process of bridge closure is analyzed theoretically: the beam elevation, stress and strain, and temperature field are monitored in real time; after the closure is completed, the finite element software is used to analyze and verify, the results show that the theoretical calculation accuracy meets the expected requirements.
【學(xué)位授予單位】:西安建筑科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:U445.4

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 陳凱旋;高大峰;董旭;路軍;;咸陽(yáng)地區(qū)夏季混凝土剛構(gòu)橋溫度梯度分析[J];公路工程;2015年05期

2 楊厚明;徐培蓁;;淺談?lì)A(yù)應(yīng)力混凝土箱梁支架預(yù)壓技術(shù)[J];科技信息;2012年34期

3 陳夢(mèng)成;顧章川;;多跨連續(xù)梁橋跨結(jié)構(gòu)的施工監(jiān)控技術(shù)[J];城市軌道交通研究;2012年05期

4 高大峰;何新成;任禹州;;陜北榆林地區(qū)混凝土箱梁溫度梯度分析[J];太原理工大學(xué)學(xué)報(bào);2012年02期

5 郭樟根;孫偉民;彭陽(yáng);;預(yù)應(yīng)力砌塊砌體預(yù)應(yīng)力損失的試驗(yàn)研究與分析[J];混凝土與水泥制品;2010年04期

6 徐六旺;;福建省南平市西城大橋合龍段頂推施工研究[J];山西建筑;2009年08期

7 張建華;張毅剛;王振清;;大跨度空間結(jié)構(gòu)施工過(guò)程力學(xué)行為的研究[J];重慶建筑大學(xué)學(xué)報(bào);2008年04期

8 張明遠(yuǎn);盧哲安;劉飛鵬;任志剛;;某大跨預(yù)應(yīng)力混凝土連續(xù)梁橋的溫度效應(yīng)分析[J];武漢理工大學(xué)學(xué)報(bào);2007年02期

9 鄭一峰;黃僑;孫永明;;部分斜拉橋合理成橋狀態(tài)的研究[J];公路交通科技;2006年11期

10 楊雷;張永水;高建;;灰色系統(tǒng)理論在白果渡嘉陵江大橋施工控制中的應(yīng)用[J];重慶交通學(xué)院學(xué)報(bào);2006年05期



本文編號(hào):2130327

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/2130327.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶9c019***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com