船舶與千米級(jí)斜拉橋碰撞數(shù)值仿真及橋墩防撞裝置分析
本文選題:船-橋碰撞 + 數(shù)值模擬; 參考:《合肥工業(yè)大學(xué)》2017年碩士論文
【摘要】:現(xiàn)于今科研人員都是采用數(shù)值模擬分析的方法研究船橋碰撞問題。本文采用大型有限元分析軟件LS-DYNA,以安徽省內(nèi)某千米級(jí)斜拉橋?yàn)楸尘?進(jìn)行了整船整橋碰撞模擬分析。依據(jù)模擬分析得到的最大碰撞力、動(dòng)態(tài)響應(yīng)等數(shù)據(jù),為橋梁設(shè)計(jì)提供參考依據(jù)。最后為大橋設(shè)計(jì)了一種浮式防撞裝置,通過模擬分析對(duì)防撞裝置的防撞性能進(jìn)行評(píng)估。本文主要工作及結(jié)論如下:(1)簡要介紹了船橋碰撞基本理論及國內(nèi)外各種簡化公式,對(duì)數(shù)值模擬中涉及的若干關(guān)鍵技術(shù)進(jìn)行了詳細(xì)討論。(2)建立了整船、整橋及防撞裝置有限元模型,采用HJC動(dòng)態(tài)本構(gòu)模型對(duì)混凝土進(jìn)行模擬,并且考慮了樁-土間的相互耦合作用。(3)對(duì)碰撞速度、角度、水位以及承臺(tái)形狀進(jìn)行了參數(shù)分析,并對(duì)不同工況下的碰撞力、能量吸收、橋梁的動(dòng)力響應(yīng)等進(jìn)行對(duì)比,得到如下結(jié)論:隨船舶碰撞速度的增加,碰撞力峰值及碰撞持續(xù)時(shí)間相應(yīng)增大;碰撞過程中,承臺(tái)與樁柱的接觸部位為除直接受到船舶撞擊之外的最危險(xiǎn)部位;船橋正撞與斜撞是不同性質(zhì)的碰撞,船舶正碰時(shí),碰撞力峰值、碰撞持續(xù)時(shí)間及橋塔頂橫橋向位移最大;水位不同造成船舶碰撞接觸面積及位置的不同,其中隨著碰撞接觸面積越大,碰撞力峰值相應(yīng)增大,碰撞持續(xù)時(shí)間相應(yīng)減小,而船舶碰撞實(shí)心承臺(tái)得到的碰撞力峰值要比碰撞空心薄壁墩得到的碰撞力峰值大,橋塔頂橫橋向位移則小;相比于矩形承臺(tái),圓形承臺(tái)降低了碰撞力峰值,延長了碰撞持續(xù)時(shí)間。(4)依據(jù)碰撞力峰值、碰撞持續(xù)時(shí)間、能量吸收及動(dòng)態(tài)響應(yīng)對(duì)防撞裝置進(jìn)行性能評(píng)估,防撞裝置的使用降低碰撞力峰值、增大碰撞持續(xù)時(shí)間、吸收船舶動(dòng)能,從而保護(hù)了橋梁的結(jié)構(gòu)安全。
[Abstract]:Now researchers are using the method of numerical simulation to study the collision problem of ship and bridge. In this paper, a large-scale finite element analysis software LS-DYNA is used to simulate the collision of a kilometer class cable-stayed bridge in Anhui Province. According to the data of maximum impact force and dynamic response obtained from simulation analysis, the reference for bridge design is provided. Finally, a floating anti-collision device is designed for the bridge, and the anti-collision performance of the anti-collision device is evaluated by simulation analysis. The main work and conclusions of this paper are as follows: (1) the basic theory of ship-bridge collision and various simplified formulas at home and abroad are briefly introduced, and some key technologies involved in numerical simulation are discussed in detail. (2) the whole ship is established. The finite element model of whole bridge and anti-collision device is used to simulate concrete with HJC dynamic constitutive model, and the interaction between pile and soil is considered. (3) the impact velocity, angle, water level and cap shape are analyzed. By comparing the collision force, energy absorption and dynamic response of bridge under different working conditions, the following conclusions are drawn: with the increase of ship collision velocity, the peak value and duration of collision force increase accordingly; The contact position between the cap and the pile column is the most dangerous part except for the direct impact of the ship, the collision between the forward collision and the oblique collision of the ship bridge is of different properties, the peak value of the collision force, the duration of the collision and the displacement of the transverse bridge at the top of the bridge tower are the largest when the ship is in positive collision. The difference of water level causes the difference of collision contact area and position. With the increase of collision contact area, the peak value of collision force increases and the duration of collision decreases accordingly. The peak value of collision force is larger than that of hollow thin-walled pier, and the displacement of transverse bridge on top of bridge tower is smaller than that of hollow thin-walled pier, and the peak value of collision force is reduced by circular cap compared with rectangular cap. The collision duration is prolonged. (4) according to the impact force peak value, collision duration time, energy absorption and dynamic response, the anti-collision device is evaluated. The use of the anti-collision device reduces the impact force peak value, increases the collision duration time, and absorbs the kinetic energy of the ship. Thus, the structure safety of the bridge is protected.
【學(xué)位授予單位】:合肥工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:U443.26
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 程小衛(wèi);李易;陸新征;閆維明;;撞擊荷載下鋼筋混凝土柱動(dòng)力響應(yīng)的數(shù)值研究[J];工程力學(xué);2015年02期
2 姜華;耿波;張錫祥;;橋墩新型防船撞裝置防撞性能研究[J];振動(dòng)與沖擊;2014年17期
3 姜華;賀拴海;王君杰;;鋼筋混凝土梁沖擊試驗(yàn)數(shù)值模擬研究[J];振動(dòng)與沖擊;2012年15期
4 姜華;王君杰;賀拴海;;鋼筋混凝土梁橋船舶撞擊連續(xù)倒塌數(shù)值模擬[J];振動(dòng)與沖擊;2012年10期
5 吳永固;耿波;汪宏;;橋梁船撞動(dòng)力有限元數(shù)值模擬分析[J];重慶交通大學(xué)學(xué)報(bào)(自然科學(xué)版);2010年05期
6 方正平;馬延輝;;船舶觸碰跨海大橋事故的調(diào)查和思考[J];中國水運(yùn)(下半月);2009年08期
7 陳誠;王君杰;汪宏;耿波;;基于碰撞數(shù)值模擬的橋梁等效靜力船撞力—修正系數(shù)[J];公路交通技術(shù);2009年03期
8 杜旭升;;6·15九江大橋船撞事故引發(fā)的思考[J];中國海事;2007年09期
9 王君杰;陳誠;;橋墩在船舶撞擊作用下的損傷仿真研究[J];工程力學(xué);2007年07期
10 江華濤,顧永寧,胡志強(qiáng);船艏橫向加強(qiáng)框架對(duì)船艏耐撞性能的影響(英文)[J];船舶力學(xué);2003年06期
相關(guān)重要報(bào)紙文章 前1條
1 ;2014年交通運(yùn)輸行業(yè)發(fā)展統(tǒng)計(jì)公報(bào)[N];中國交通報(bào);2015年
相關(guān)碩士學(xué)位論文 前5條
1 蔡斌斌;船舶—橋墩碰撞有限元數(shù)值仿真及橋墩防撞裝置的研究[D];合肥工業(yè)大學(xué);2015年
2 黃飛;船舶撞擊下連續(xù)梁橋的橋墩動(dòng)力響應(yīng)及整橋局部倒塌研究[D];天津大學(xué);2014年
3 孫振;橋梁防船撞設(shè)施的比較研究[D];同濟(jì)大學(xué);2007年
4 燕斌;橋梁樁基礎(chǔ)抗震簡化模型比較研究[D];同濟(jì)大學(xué);2007年
5 陳誠;橋梁設(shè)計(jì)船撞力及損傷狀態(tài)仿真研究[D];同濟(jì)大學(xué);2006年
,本文編號(hào):2105590
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/2105590.html