基于GPS數(shù)據(jù)的城市出租車運(yùn)營分析與數(shù)據(jù)挖掘
本文選題:出租車GPS數(shù)據(jù) + 運(yùn)營特性 ; 參考:《山東大學(xué)》2015年碩士論文
【摘要】:出租車作為城市客運(yùn)交通的重要組成部分,已經(jīng)成為影響城市道路交通規(guī)劃與管理的重要因素之一。目前,國內(nèi)外很多學(xué)者都對(duì)出租車GPS數(shù)據(jù)的應(yīng)用進(jìn)行了研究,主要集中在交通狀態(tài)估計(jì)、交通行為分析、出行OD預(yù)測(cè)、出租車運(yùn)營水平評(píng)價(jià)等方面,較少涉及對(duì)出租車時(shí)空分布相關(guān)影響因素的分析,如道路擁堵情況及不同土地利用性質(zhì)等,而該部分內(nèi)容卻是交通規(guī)劃和交通管理所亟需的信息;诔鲎廛嘒PS定位系統(tǒng)采集的數(shù)據(jù),本文深入挖掘和分析了出租車基本運(yùn)營特性和時(shí)空分布規(guī)律。其中,通過對(duì)出租車基本運(yùn)營特性的挖掘,可以為交通管理者提供包括空載率等運(yùn)營數(shù)據(jù),有助于管理者了解出租車市場(chǎng)的運(yùn)營狀況,為出租車運(yùn)營與管理提供決策支持,同時(shí)也為出租車時(shí)空分布特性分析提供基礎(chǔ);通過對(duì)出租車數(shù)據(jù)進(jìn)行時(shí)空分布挖掘,可以動(dòng)態(tài)感知不同道路、不同功能區(qū)域內(nèi)出租車的時(shí)空運(yùn)動(dòng)規(guī)律,分析出租車時(shí)空分布與道路擁堵程度、不同功能區(qū)域之間的關(guān)系,可對(duì)城市交通與土地規(guī)劃的管理決策者提供直觀可靠的數(shù)據(jù)支持。本文首先對(duì)出租車GPS原始數(shù)據(jù)進(jìn)行預(yù)處理,并進(jìn)行了坐標(biāo)變換和地圖匹配。在此基礎(chǔ)上,分析了出租車運(yùn)營基本指標(biāo),主要包括運(yùn)營出租車數(shù)量、全天載客次數(shù)、平均載客次數(shù)、平均載客時(shí)間、平均空駛時(shí)間、運(yùn)營時(shí)間、空駛率等,其中,本文確定了進(jìn)行乘客上下車點(diǎn)識(shí)別的方法,這是進(jìn)行全天載客次數(shù)等基本運(yùn)營指標(biāo)計(jì)算的基礎(chǔ),也是下一步進(jìn)行出租車上下車時(shí)空分布分析的基礎(chǔ)。其次,本文對(duì)出租車時(shí)空分布進(jìn)行了深入挖掘。對(duì)出租車在不同道路上的分布情況進(jìn)行了分析,并針對(duì)道路擁堵程度與出租車分布之間的關(guān)系進(jìn)行了深入研究;系統(tǒng)性的分析了不同功能區(qū)域所滿足的出租車出行特征,選取功能明確、出租車載客出行集聚的幾個(gè)典型區(qū)域,主要包括對(duì)外交通用地(濟(jì)南火車站、濟(jì)南長途汽車站、濟(jì)南西客站)、行政辦公用地(齊魯軟件園)、居住用地(魯能領(lǐng)秀城)、商業(yè)用地(萬達(dá)廣場(chǎng))、文化娛樂用地(泉城廣場(chǎng)),并選取了不同時(shí)段出租車運(yùn)營數(shù)量、出租車上下車分布來總結(jié)對(duì)比不同功能區(qū)域內(nèi)出租車出行規(guī)律,另外,對(duì)于對(duì)外交通用地,引入空載出租車數(shù)量占比來刻畫其周邊出租車的利用力度。再次,本文根據(jù)所分析內(nèi)容,從出租車運(yùn)營特性及出租車時(shí)空分布上兩方面出發(fā),對(duì)影響出租車運(yùn)營水平的因素進(jìn)行了總結(jié),并從出租車運(yùn)營管理方面、出租車調(diào)度方面提出了針對(duì)出租車運(yùn)營的改善策略。最后,本文對(duì)出租車運(yùn)營管理系統(tǒng)進(jìn)行了設(shè)計(jì),利用C#和百度地圖API進(jìn)行編程,實(shí)現(xiàn)了對(duì)出租車的基本數(shù)據(jù)管理、基本運(yùn)營指標(biāo)的顯示以及出租車分布的可視化呈現(xiàn)。
[Abstract]:As an important part of urban passenger traffic, taxi has become one of the important factors affecting urban road traffic planning and management. At present, many scholars at home and abroad have studied the application of GPS data in taxis, mainly in the aspects of traffic state estimation, traffic behavior analysis, travel OD prediction, taxi operation level evaluation, etc. It is less involved in the analysis of the factors related to the spatial and temporal distribution of taxis, such as road congestion and the nature of different land use, but this part is the much-needed information for traffic planning and traffic management. Based on the data collected by the taxi GPS positioning system, this paper deeply excavates and analyzes the basic operating characteristics and space-time distribution law of taxi. Among them, through mining the basic operating characteristics of taxi, it can provide traffic managers with operation data, including no-load rate, which is helpful for managers to understand the operation status of taxi market and provide decision support for taxi operation and management. At the same time, it also provides the basis for the analysis of the spatial and temporal distribution characteristics of taxis. By mining the spatial and temporal distribution of taxi data, we can dynamically perceive the spatial and temporal movement of taxis in different roads and different functional areas. Analyzing the spatial and temporal distribution of taxis, the degree of road congestion, and the relationship between different functional areas can provide intuitive and reliable data support for urban traffic and land planning management decision makers. In this paper, we preprocess the original GPS data of taxi, and carry out coordinate transformation and map matching. On this basis, the paper analyzes the basic indexes of taxi operation, including the number of taxis operated, the number of passengers carried throughout the day, the average passenger carrying time, the average empty driving time, the operation time, the empty driving rate, and so on. In this paper, the method of identifying passengers' boarding and disembarkation points is determined, which is the basis of calculating the basic operation indexes such as the number of passengers carrying passengers all day, and is also the basis of analyzing the space-time distribution of taxi boarding and alighting next step. Secondly, this paper deeply excavates the spatial and temporal distribution of taxi. The distribution of taxi on different roads is analyzed, and the relationship between traffic congestion and taxi distribution is studied. The characteristics of taxi travel in different functional areas are systematically analyzed. Select several typical areas with clear function and taxi transportation gathering, mainly including external transportation land (Jinan railway station, Jinan long-distance bus station, Jinan long distance bus station, Jinan long-distance bus station, Jinan railway station, Jinan long-distance bus station, Jinan West passenger Station), administrative office space (Qilu software park), residential land (Luneng leading city), commercial land (Wanda Square), cultural and recreational land (Quancheng Square), and selected different periods of taxi operation, To sum up and compare the taxi travel law in different functional areas, the paper introduces the proportion of the number of no-load taxis to describe the utilization of the surrounding taxis for external transportation land. Thirdly, according to the analysis, this paper summarizes the factors that affect the taxi operation level from the aspects of taxi operation characteristics and taxi space-time distribution, and from the taxi operation management, In the aspect of taxi dispatching, the improvement strategy for taxi operation is put forward. Finally, the paper designs the taxi operation management system, programming with C # and Baidu map API, realizes the basic data management of taxi, the display of basic operation index and the visualization of taxi distribution.
【學(xué)位授予單位】:山東大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:U491;TP311.13
【共引文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王安保;吳翠紅;;基于XML與中間件技術(shù)的GIS空間數(shù)據(jù)存取[J];計(jì)算機(jī)輔助工程;2008年02期
2 陳敦根;陳文生;范躍祖;;一種實(shí)現(xiàn)關(guān)系數(shù)據(jù)庫管理空間數(shù)據(jù)的方法[J];計(jì)算機(jī)工程;2006年24期
3 李瑞敏;陸化普;;基于WebGIS的智能交通管理指揮調(diào)度系統(tǒng)[J];計(jì)算機(jī)工程;2007年21期
4 陳迎欣;;基于改進(jìn)蟻群算法的車輛路徑優(yōu)化問題研究[J];計(jì)算機(jī)應(yīng)用研究;2012年06期
5 李偉;高駿;;基于GIS-T的交通信息發(fā)布系統(tǒng)設(shè)計(jì)[J];交通標(biāo)準(zhǔn)化;2010年21期
6 李玲;劉正綱;楊德宏;;基于GIS技術(shù)物流配送系統(tǒng)的研究[J];礦山測(cè)量;2007年01期
7 李雨夢(mèng);王晶妍;;聚類分析法確定城市出租車交接班最優(yōu)地點(diǎn)[J];科協(xié)論壇(下半月);2012年10期
8 曹福靈;郭明飛;董紅召;;城市公交車輛行駛工況分析方法研究[J];科技通報(bào);2013年01期
9 白竹;王瑋;;基于GPS數(shù)據(jù)的擁擠狀態(tài)下出租車運(yùn)行信息提取技術(shù)[J];黑龍江工程學(xué)院學(xué)報(bào)(自然科學(xué)版);2012年04期
10 邊江南;劉洪武;;基于無源RFID的最小包容圓自適應(yīng)定位法[J];計(jì)算機(jī)與現(xiàn)代化;2013年01期
相關(guān)博士學(xué)位論文 前10條
1 張水艦;基于GIS-T的城市交通最優(yōu)路徑誘導(dǎo)算法研究[D];西南交通大學(xué);2010年
2 戴友鋒;基于GIS的城市綜合交通信息管理技術(shù)研究[D];解放軍信息工程大學(xué);2008年
3 郭淑霞;基于時(shí)變二源數(shù)據(jù)的城市公交調(diào)度協(xié)調(diào)模型與算法[D];北京交通大學(xué);2010年
4 鄧中偉;面向交通服務(wù)的多源移動(dòng)軌跡數(shù)據(jù)挖掘與多尺度居民活動(dòng)的知識(shí)發(fā)現(xiàn)[D];華東師范大學(xué);2012年
5 徐亞;基于旅客出行行為分析的道路客運(yùn)班線優(yōu)化研究[D];武漢理工大學(xué);2012年
6 王龍飛;基于車牌照的車輛出行軌跡分析方法與實(shí)踐研究[D];長安大學(xué);2011年
7 楊英俊;城市出租汽車服務(wù)管理關(guān)鍵技術(shù)研究[D];長安大學(xué);2013年
8 張瑋;基于GPS浮動(dòng)車的路徑行程時(shí)間估計(jì)系統(tǒng)關(guān)鍵技術(shù)研究[D];吉林大學(xué);2011年
9 呂北岳;基于浮動(dòng)車的深圳市道路交通運(yùn)行評(píng)價(jià)研究[D];武漢大學(xué);2013年
10 宋鶯;面向動(dòng)態(tài)導(dǎo)航的實(shí)時(shí)交通信息服務(wù)研究[D];武漢大學(xué);2011年
,本文編號(hào):2088202
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/2088202.html