智能交通系統(tǒng)信息采集終端的研究與實(shí)現(xiàn)
發(fā)布時(shí)間:2018-06-27 20:31
本文選題:交通圖像 + 車(chē)數(shù)提取; 參考:《西安建筑科技大學(xué)》2015年碩士論文
【摘要】:隨著社會(huì)的不斷發(fā)展以及國(guó)民生活水平的提高,我國(guó)汽車(chē)的保有量也隨之增加,進(jìn)而造成越來(lái)越嚴(yán)重的交通擁堵,給人們的出行帶來(lái)諸多不便,開(kāi)發(fā)出一套行之有效的智能交通系統(tǒng)對(duì)監(jiān)測(cè)和緩解交通擁堵具有重要的現(xiàn)實(shí)意義。本課題以智能交通信息采集終端為研究對(duì)象,以路況圖像檢測(cè)為研究重點(diǎn),開(kāi)展智能交通系統(tǒng)信息采集終端的研究。主要研究?jī)?nèi)容如下:首先開(kāi)展對(duì)圖像的預(yù)處理以及和背景圖片相比較等算法的研究,進(jìn)行圖像信息和車(chē)流速信息的整合算法的研究,進(jìn)行對(duì)現(xiàn)有算法的整合,設(shè)計(jì)出適合本系統(tǒng)的最優(yōu)算法,通過(guò)這些算法來(lái)實(shí)現(xiàn)交通流量檢測(cè)和交通路況的判定,并利用MATLAB進(jìn)行仿真,以驗(yàn)證該算法的可行性和精度。其次是進(jìn)行智能交通系統(tǒng)信息采集終端的硬件設(shè)計(jì)。該硬件系統(tǒng)包括:交通圖像信息的采集模塊,利用測(cè)速線圈進(jìn)行的車(chē)速檢測(cè)模塊,數(shù)據(jù)的存儲(chǔ)模塊和圖像處理模塊。通過(guò)設(shè)計(jì)該硬件的具體電路將各個(gè)模塊整合在一起,組成所需要特定功能的硬件系統(tǒng),之后再對(duì)該系統(tǒng)的各個(gè)模塊進(jìn)行測(cè)試,檢查各個(gè)模塊是否能正常工作以及檢查模塊之間是否連接正確。最后是算法移植,將整合后的算法移植到本系統(tǒng)采用的DSP中,利用Visual DSP++5.1集成開(kāi)發(fā)環(huán)境,調(diào)試基于ADSP-BF533的智能交通系統(tǒng)信息采集處理算法,實(shí)現(xiàn)系統(tǒng)的模擬運(yùn)行。實(shí)驗(yàn)表明,系統(tǒng)能夠?qū)慕煌▓D像中提取出的車(chē)數(shù)信息和模擬出的車(chē)速數(shù)據(jù)進(jìn)行整合,并能準(zhǔn)確判斷出該研究路段的路況。
[Abstract]:With the continuous development of society and the improvement of national living standards, the number of cars in our country has also increased, which has caused more and more serious traffic congestion, and brought a lot of inconvenience to people's travel. It is very important to develop an effective intelligent transportation system for monitoring and alleviating traffic congestion. In this paper, the intelligent transportation information acquisition terminal is taken as the research object, and the road condition image detection is the focus of the research, and the research of the intelligent transportation system information acquisition terminal is carried out. The main research contents are as follows: firstly, the image preprocessing and background image comparison algorithms are studied, and the integration algorithms of image information and vehicle velocity information are studied, and the existing algorithms are integrated. An optimal algorithm is designed for this system, which can be used to detect traffic flow and determine traffic condition. MATLAB is used to simulate to verify the feasibility and accuracy of the algorithm. Secondly, the hardware design of intelligent transportation system information acquisition terminal is carried out. The hardware system includes: traffic image information acquisition module, speed detection module using speed coil, data storage module and image processing module. By designing the specific circuit of the hardware, the modules are integrated together to form a hardware system with specific functions, and then the modules of the system are tested. Check that each module works properly and that the connection between modules is correct. Finally, the algorithm is transplanted, the integrated algorithm is transplanted to the DSP used in this system, and the intelligent transportation system information collection and processing algorithm based on ADSP-BF533 is debugged by using Visual DSP 5.1 integrated development environment to realize the simulation operation of the system. The experimental results show that the system can integrate the vehicle number information extracted from the traffic image and the simulated speed data, and can accurately judge the road condition of the studied section.
【學(xué)位授予單位】:西安建筑科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類(lèi)號(hào)】:U495;TP391.41
【參考文獻(xiàn)】
相關(guān)期刊論文 前3條
1 杜宇人;周愛(ài)軍;;一種基于視頻圖像的運(yùn)動(dòng)車(chē)輛跟蹤方法[J];電子測(cè)量與儀器學(xué)報(bào);2009年03期
2 史其信,熊輝;展望21世紀(jì)智能交通系統(tǒng)(ITS)的發(fā)展[J];黑龍江工程學(xué)院學(xué)報(bào);2001年01期
3 徐劍;丁曉青;王生進(jìn);吳佑壽;;一種融合局部紋理和顏色信息的背景減除方法[J];自動(dòng)化學(xué)報(bào);2009年09期
,本文編號(hào):2075195
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/2075195.html
最近更新
教材專(zhuān)著