鋼—超薄UHPC層輕型組合橋面性能研究
本文選題:橋梁工程 + 超薄UHPC層 ; 參考:《湖南大學(xué)》2015年碩士論文
【摘要】:為了將更薄的超高性能混凝土UHPC(Ultra-High Performance Concrete)層與正交異性鋼橋面組合形成正交異性鋼橋面-超薄UHPC層輕型組合橋面(以下簡稱為鋼-超薄UHPC組合橋面),使之適用于設(shè)計(jì)鋪裝層較薄(50mm~55mm)的橋面結(jié)構(gòu),而盡量不改變原橋梁結(jié)構(gòu)的受力狀態(tài),本文對鋼-超薄UHPC組合橋面結(jié)構(gòu)的基本性能進(jìn)行了研究。鋼-超薄UHPC組合橋面就是將薄至35mm的UHPC層與正交異性鋼橋面板結(jié)合形成組合結(jié)構(gòu),并將UHPC層內(nèi)的鋼筋網(wǎng)直接焊接于正交異性鋼橋面頂板上,用以承擔(dān)兩者之間的剪力。除了35mm的UHPC層外,組合橋面整體還包括鋪設(shè)在UHPC層上15~20mm厚的磨耗層。這種組合橋面結(jié)構(gòu)需要在保證其安全性、耐久性等基本使用性能的前提下,通過降低自身的厚度,擴(kuò)大適用范圍,從而同時(shí)達(dá)到增加橋面剛度,降低了正交異性鋼橋面的疲勞開裂風(fēng)險(xiǎn),避免采用傳統(tǒng)瀝青鋪裝時(shí)出現(xiàn)的鋪裝層病害問題。本文是以潤揚(yáng)長江公路大橋南汊懸索橋作為研究對象,擬對其正交異性鋼橋面進(jìn)行鋼-超薄UHPC組合橋面板方案的研究,本論文主要完成了以下工作:(1)論述了傳統(tǒng)正交異性鋼橋面板及其鋪裝的病害問題,提出了鋼-超薄UHPC組合橋面方案,闡述其構(gòu)造特點(diǎn)和在組合橋面設(shè)計(jì)中的必要性。(2)利用有限元軟件Midas對潤揚(yáng)長江大橋的鋼-超薄UHPC組合橋面方案進(jìn)行整體計(jì)算。計(jì)算結(jié)果表明,采用組合橋面對大橋整體受力影響很小,對結(jié)構(gòu)整體安全性基本沒有影響。(3)利用ANSYS有限元軟件對鋼-超薄UHPC組合橋面進(jìn)行了基于熱點(diǎn)應(yīng)力法的局部輪載分析,使用國內(nèi)規(guī)范規(guī)定的汽車荷載對組合橋面進(jìn)行分析,由分析的結(jié)果得知,35mm厚UHPC層對正交異性鋼橋面板受力性能改善明顯,鋼橋面頂板應(yīng)力幅下降達(dá)到68.72%,U肋和橫隔板應(yīng)力幅下降接近11.98%到32.38%,因此可大大降低鋼橋面板疲勞開裂風(fēng)險(xiǎn)。同時(shí)計(jì)算得出的UHPC層表面最大拉應(yīng)為7.48MPa,橫橋向最大拉應(yīng)力為7.36MPa。(4)對35mm厚UHPC層組合板進(jìn)行橫橋向抗彎試驗(yàn)研究,試驗(yàn)結(jié)果表明:UHPC層的開裂強(qiáng)度和極限強(qiáng)度與其截面配筋率密切相關(guān)。隨著配筋率的增大,抗彎強(qiáng)度逐漸提高,開裂應(yīng)力也逐漸增大。B5試件UHPC表層最小開裂應(yīng)力已經(jīng)達(dá)到了26.3MPa,是理論計(jì)算中橫橋向拉應(yīng)力7.36MPa的將近3.6倍,可以認(rèn)為,在規(guī)定的汽車荷載作用下,UHPC表層產(chǎn)生的最大拉應(yīng)力小于試驗(yàn)得出的UHPC層能夠承擔(dān)的拉應(yīng)力,因此是能夠保證結(jié)構(gòu)安全可靠的,證明了此新型組合橋面結(jié)構(gòu)的可行性。(5)闡述了鋼橋疲勞評估的基本理論,簡述了鋼橋疲勞設(shè)計(jì)的三種方法,對美國、歐洲和中國鋼橋疲勞設(shè)計(jì)規(guī)范進(jìn)行了簡要的對比。對潤揚(yáng)長江大橋鋼-超薄UHPC組合板方案的疲勞壽命進(jìn)行評估,引入熱點(diǎn)應(yīng)力法,根據(jù)歐洲規(guī)范(Eurocode)確定疲勞荷載模型,計(jì)算其熱點(diǎn)應(yīng)力并確定最不利構(gòu)造細(xì)節(jié)的應(yīng)力頻值譜,最后通過熱點(diǎn)應(yīng)力S-N曲線和Miner線性累積損傷理論確定其疲勞壽命。
[Abstract]:In order to combine the thin UHPC-UHPC Ultra-High performance concrete deck with orthotropic steel deck to form the light composite deck of orthotropic steel deck and ultra-thin UHPC layer (hereinafter referred to as the steel-ultra-thin UHPC composite deck), it is suitable for the design of UHPC composite deck. A bridge deck structure with a thin overlay of 50 mm to 55 mm, The basic performance of steel-ultrathin UHPC composite deck structure is studied in this paper. The composite deck of steel and ultra-thin UHPC is composed of 35mm layer and orthotropic steel bridge panel, and the steel mesh in the layer is welded directly to the roof of orthotropic steel deck, which is used to bear the shear force between them. In addition to the UHPC layer of 35mm, the whole composite deck also includes a 15~20mm thick wear layer laid on the UHPC layer. This kind of composite deck structure needs to reduce its thickness and expand its application range under the premise of guaranteeing its safety and durability, so as to increase the stiffness of bridge deck at the same time. The risk of fatigue cracking of orthotropic steel deck was reduced, and the problem of pavement damage occurred in traditional asphalt pavement was avoided. In this paper, the suspension bridge of Runyang Changjiang River Highway Bridge is taken as the object of study, and the scheme of steel and ultra-thin UHPC composite deck slab is studied on the orthotropic steel deck of the bridge deck. The main work of this paper is as follows: (1) this paper discusses the problem of the defects of the traditional orthotropic steel bridge panel and its pavement, and puts forward the scheme of the steel-ultra-thin UHPC composite deck. The structural characteristics and the necessity in the design of composite deck are described. The finite element software Midas is used to calculate the steel-ultrathin UHPC composite deck scheme of Runyang Yangtze River Bridge. The calculation results show that the composite bridge has little effect on the overall stress of the bridge, and has no effect on the overall safety of the structure. The finite element software ANSYS is used to analyze the local wheel load of the steel-ultra-thin UHPC composite deck based on the hot spot stress method. The combined deck is analyzed by using the vehicle load specified in the domestic code. The results show that the stress performance of the deck of orthotropic steel bridge is improved obviously by the UHPC layer of 35mm thick. The stress amplitude of steel bridge deck roof decreases to 68.72U rib and transverse diaphragm by 11.98% to 32.38%, so the risk of fatigue cracking of steel bridge slab can be greatly reduced. At the same time, the maximum tensile strength of 35mm layer surface should be 7.48 MPA and the maximum tensile stress of transverse bridge is 7.36 MPA / L). The experimental results show that the cracking strength and ultimate strength of the 35mm layer are closely related to the reinforcement ratio of the cross section. With the increase of reinforcement ratio, the flexural strength and crack stress of UHPC are gradually increased. The minimum cracking stress of UHPC surface layer has reached 26.3MPa, which is 3.6 times of the tensile stress of 7.36MPa calculated in theory. The maximum tensile stress produced by UHPC surface layer under specified vehicle load is smaller than that of UHPC layer, so it can ensure the safety and reliability of the structure. The feasibility of this new composite deck structure is proved. The basic theory of fatigue assessment of steel bridge is expounded, three methods of fatigue design of steel bridge are briefly described, and the fatigue design codes of steel bridge in America, Europe and China are compared briefly. The fatigue life of Runyang Yangtze River Bridge steel-ultra-thin UHPC composite plate scheme is evaluated. The hot spot stress method is introduced, and the fatigue load model is determined according to Eurocode. the hot spot stress is calculated and the stress frequency spectrum of the most unfavorable structural details is determined. Finally, the fatigue life is determined by the hot spot stress S-N curve and Miner linear cumulative damage theory.
【學(xué)位授予單位】:湖南大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:U443.31
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 邵旭東;王文前;辜杰凱;陳斌;;裝配式纖維混凝土組合橋面體系試驗(yàn)[J];公路交通科技;2013年06期
2 蒲黔輝;高立強(qiáng);劉振標(biāo);施洲;;基于熱點(diǎn)應(yīng)力法的正交異性鋼橋面板疲勞驗(yàn)算[J];西南交通大學(xué)學(xué)報(bào);2013年03期
3 邵旭東;周環(huán)宇;曹君輝;;鋼-薄層RPC組合橋面結(jié)構(gòu)栓釘?shù)目辜粜阅躘J];公路交通科技;2013年04期
4 孫春林;;潤揚(yáng)長江公路大橋鋼橋面鋪裝養(yǎng)護(hù)維修的監(jiān)理要點(diǎn)[J];華東公路;2013年01期
5 陳斌;邵旭東;曹君輝;;正交異性鋼橋面疲勞開裂研究[J];工程力學(xué);2012年12期
6 邵旭東;張哲;劉夢麟;曹君輝;;正交異性鋼-RPC組合橋面板彎拉強(qiáng)度的實(shí)驗(yàn)研究[J];湖南大學(xué)學(xué)報(bào)(自然科學(xué)版);2012年10期
7 劉夢麟;邵旭東;張哲;胡佳;;正交異性鋼板-超薄RPC組合橋面板結(jié)構(gòu)的抗彎疲勞性能試驗(yàn)[J];公路交通科技;2012年10期
8 李丹;余健;章登精;;南京地區(qū)環(huán)氧瀝青混凝土鋼橋面鋪裝病害分析及養(yǎng)護(hù)措施[J];森林工程;2012年05期
9 陳岱杰;;西堠門大橋鋼橋面環(huán)氧瀝青混凝土鋪裝方案及關(guān)鍵環(huán)節(jié)施工控制[J];中國水運(yùn)(下半月);2012年04期
10 閻培渝;;超高性能混凝土(UHPC)的發(fā)展與現(xiàn)狀[J];混凝土世界;2010年09期
相關(guān)碩士學(xué)位論文 前2條
1 周環(huán)宇;鋼—活性粉末混凝土(RPC)組合梁界面受剪分析[D];湖南大學(xué);2013年
2 劉小旭;FRP-瀝青混凝土鋼橋面鋪裝結(jié)構(gòu)靜力特性研究[D];重慶交通大學(xué);2010年
,本文編號:2034117
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/2034117.html