懸索橋主纜與索鞍間側(cè)向力及摩擦滑移特性分析
本文選題:主纜抗滑 + 精細(xì)化模型 ; 參考:《西南交通大學(xué)》2017年碩士論文
【摘要】:多塔連跨懸索橋作為跨越寬廣水域的重要橋梁結(jié)構(gòu)形式,計(jì)算理論與施工技術(shù)的不完善成為限制其發(fā)展的重要因素。其中"中塔效應(yīng)"的存在,即主纜抗滑移安全與撓跨比之間存在的對(duì)立關(guān)系,是多塔懸索橋設(shè)計(jì)必須解決的矛盾之一。目前關(guān)于主纜抗滑的計(jì)算參數(shù)僅局限于結(jié)構(gòu)的總體布置及荷載形式,實(shí)際工程中則多采用模型試驗(yàn)的方法提取名義摩擦系數(shù),而針對(duì)鞍槽內(nèi)索股的真實(shí)滑移情況及傳力機(jī)理分析,則需要建立主纜-索鞍精細(xì)化接觸模型進(jìn)行研究。本文主要通過(guò)以下三個(gè)方面對(duì)主纜-索鞍抗滑問(wèn)題展開(kāi)了討論:(1)基于ABAQUS/Explicit平臺(tái)對(duì)主纜-索鞍體系進(jìn)行局部精細(xì)化建模,準(zhǔn)確設(shè)置鋼絲與鋼絲、鋼絲與鞍槽之間的接觸摩擦關(guān)系,計(jì)算分析了單槽內(nèi)一定數(shù)量鋼絲排布的側(cè)向力分布模式,并探討了索股排列方式、索股張力及構(gòu)件之間的摩擦系數(shù)對(duì)側(cè)向力分布的影響。(2)基于ABAQUS/Explicit平臺(tái)對(duì)主纜-索鞍體系進(jìn)行全結(jié)構(gòu)精細(xì)化建模,代入相同條件下的側(cè)向力換算結(jié)果,模擬對(duì)應(yīng)的分層滑移狀態(tài),計(jì)算研究滑移過(guò)程中索股張拉端的位移形式、索股兩端應(yīng)力變化及鋼絲沿索長(zhǎng)縱向的應(yīng)力分布模式,從細(xì)觀層面對(duì)分層滑移特征及傳力機(jī)理進(jìn)行分析。(3)針對(duì)主纜索鞍抗滑移的問(wèn)題,探討了鞍槽內(nèi)索股排列方式、索股張力及構(gòu)件之間的摩擦系數(shù)對(duì)抗滑能力的影響,并分析評(píng)估了設(shè)置豎向摩擦板或水平摩擦板對(duì)提高抗滑能力的作用效果。論文得出如下主要結(jié)論:索股側(cè)向力呈負(fù)指數(shù)收斂型曲線分布,且在鋼絲底層出現(xiàn)驟減現(xiàn)象;側(cè)向力是導(dǎo)致分層滑移的直接因素;分層滑移的現(xiàn)象可歸結(jié)為:上層鋼絲先于下層鋼絲滑移、同一奇數(shù)層鋼絲則中間鋼絲先于外側(cè)鋼絲滑移、當(dāng)?shù)讓愉摻z出現(xiàn)極限滑移,則索股發(fā)生整體滑移;豎向摩擦板與水平摩擦板的設(shè)置能夠有效提高主纜的抗滑能力,但水平摩擦板應(yīng)用相對(duì)局限。
[Abstract]:Multi-tower and multi-span suspension bridge is an important structural form of bridge spanning wide water area. The imperfection of calculation theory and construction technology has become an important factor restricting its development. The existence of "mid-tower effect", that is, the opposite relationship between the anti-slip safety of main cable and the ratio of deflection to span, is one of the contradictions that must be solved in the design of multi-tower suspension bridge. At present, the calculation parameters of anti-skid of the main cable are limited to the general arrangement of the structure and the form of load, and the method of model test is used to extract the nominal friction coefficient in practical engineering. In view of the real slip of cable strands in saddle groove and the analysis of force transfer mechanism, it is necessary to establish a fine contact model between main cable and cable saddle. In this paper, the main cable saddle anti-sliding problem is discussed in the following three aspects: 1) based on Abaqus / explicit platform, the local fine modeling of the main cable saddle system is carried out, and the contact friction relationship between steel wire and steel wire, steel wire and saddle groove is accurately set up. The lateral force distribution model of a certain number of steel wires in a single slot is calculated and analyzed, and the arrangement of cable strands is discussed. The influence of cable tension and friction coefficient between members on lateral force distribution. (2) based on Abaqus / explicit platform, the whole structure of cable saddle system is modeled, and the lateral force conversion results under the same conditions are substituted to simulate the corresponding layer-slip state. The displacement form of cable strands, the stress variation at both ends of cable strands and the stress distribution model of steel wire along the length of cable are calculated and studied. In view of the problem of anti-slip of main cable saddle, the influence of cable strands arrangement, cable tension and friction coefficient between elements on the resistance to sliding is discussed. The effect of vertical friction plate or horizontal friction plate on improving the skid resistance is analyzed and evaluated. The main conclusions are as follows: the lateral force of cable strands is a negative exponential convergent curve distribution, and suddenly decreases at the bottom of the steel wire, the lateral force is the direct factor leading to stratification slip; The phenomenon of delamination slippage can be concluded as follows: the upper layer steel wire is prior to the lower layer steel wire slip, the middle steel wire is earlier than the outside steel wire slip before the same odd layer steel wire, when the bottom layer steel wire appears the limit slip, then the cable strand will slip as a whole; The setting of vertical friction plate and horizontal friction plate can effectively improve the skid resistance of the main cable, but the application of horizontal friction plate is relatively limited.
【學(xué)位授予單位】:西南交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:U448.25
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王秀蘭;徐岳;柴生波;;三塔懸索橋主纜與中塔鞍座抗滑簡(jiǎn)化計(jì)算方法[J];哈爾濱工業(yè)大學(xué)學(xué)報(bào);2016年09期
2 劉鑰;朱安靜;羅曉媛;吳偉;;三塔自錨式懸索橋主纜抗滑移研究[J];交通科技;2016年02期
3 柴生波;肖汝誠(chéng);王秀蘭;任翔;;多塔懸索橋主纜與鞍座抗滑解析計(jì)算方法[J];中國(guó)公路學(xué)報(bào);2016年04期
4 黃奶清;李亞平;黃吉滔;;懸索橋主塔索鞍計(jì)算分析研究[J];工程與建設(shè);2014年02期
5 張清華;李喬;周凌遠(yuǎn);;懸索橋主纜與鞍座摩擦特性理論分析方法[J];中國(guó)公路學(xué)報(bào);2014年01期
6 王常峰;陳興沖;朱春林;夏修身;;考慮支座及限位裝置非線性的接觸摩擦單元模型[J];工程力學(xué);2013年08期
7 方國(guó)強(qiáng);林韜;;岳陽(yáng)洞庭湖大橋主索鞍受力分析[J];市政技術(shù);2013年03期
8 杜萬(wàn)強(qiáng);;某懸索橋主索鞍應(yīng)力試驗(yàn)及數(shù)值分析[J];鐵道建筑;2013年02期
9 魏龍;劉其和;張鵬高;;基于分形理論的滑動(dòng)摩擦表面接觸力學(xué)模型[J];機(jī)械工程學(xué)報(bào);2012年17期
10 張勁泉;曲兆樂(lè);宋建永;楊昀;;多塔連跨懸索橋綜述[J];公路交通科技;2011年09期
相關(guān)博士學(xué)位論文 前1條
1 嚴(yán)琨;大跨度懸索橋主纜彎曲剛度效應(yīng)及二次應(yīng)力研究[D];西南交通大學(xué);2015年
相關(guān)碩士學(xué)位論文 前1條
1 肖剛;三塔懸索橋主纜與鞍座抗滑移設(shè)計(jì)研究[D];西南交通大學(xué);2015年
,本文編號(hào):2003822
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/2003822.html