車輛荷載作用下加筋土擋墻的力學響應分析
本文選題:加筋土擋墻 + 車輛荷載 ; 參考:《湖南科技大學》2017年碩士論文
【摘要】:在支擋結(jié)構(gòu)中,加筋土擋土墻因其獨特的優(yōu)勢被廣泛應用于邊坡處理及路堤加固等工程中,通常受到長期的交通荷載的作用。論文以330國道蓮都至縉云段改擴建工程為依托,以模塊面板式加筋土擋墻為研究對象,通過理論分析、數(shù)值模擬和現(xiàn)場車載試驗對模塊式加筋土擋墻的設計方法、筋材鋪設方法優(yōu)化、車輛荷載作用下的動響應進行了系統(tǒng)的研究。主要研究內(nèi)容與結(jié)論如下:1、結(jié)合依托工程的地形地質(zhì)條件,采用模塊式加筋土擋墻作為路基支擋結(jié)構(gòu),并進行了擋墻設計。2、基于加筋土擋墻土壓力分布規(guī)律和穩(wěn)定性要求,建立了筋材長度的優(yōu)化方法,并以依托工程資料為基礎進行了實例分析。3、以依托工程為研究對象,采用FLAC3D建立數(shù)值分析模型,分析了靜態(tài)車輛荷載作用下加筋土擋土墻的變形、土壓力以及筋材拉應力的發(fā)展規(guī)律。結(jié)果表明,面墻后側(cè)向土壓力沿墻深度方向呈非線性分布,加筋體后側(cè)向土壓力沿墻深度方向分布曲線近似為線性。同面墻后的側(cè)向土壓力相比,加筋體后的側(cè)向土壓力受車輛位置的影響較大.4、通過建立數(shù)值分析模型,分析了車輛動荷載作用時加筋土擋墻的響應規(guī)律。結(jié)果表明,無論是面墻處的動土壓力峰值還是面墻處的加速度峰值,均在墻頂處取得最大值,并且隨著車輛行車位置遠離面墻,峰值迅速減小。5、開展了加筋土擋墻的現(xiàn)場試驗,測試了施工過程中和受車輛荷載作用后擋土墻的應力應變發(fā)展規(guī)律。結(jié)果表明,靜態(tài)車輛荷載作用時,加筋體后附加側(cè)向土壓力實測峰值比Boussinesq理論值稍小,但實測峰值發(fā)生的位置比理論值要深;當車輛荷載作用在加筋體上時,車輛行車距離對加筋體內(nèi)產(chǎn)生的動土壓力影響不大,當車輛荷載作用在加筋體后時,車輛行車距離對加筋體內(nèi)的動土壓力大小及分布模式有很大影響;無論是在靜態(tài)車輛作用下還是在車輛動載作用下,加筋體后側(cè)向土壓力遠大于面墻后的側(cè)向土壓力。
[Abstract]:In the retaining structure reinforced earth retaining wall is widely used in slope treatment and embankment reinforcement because of its unique advantages and is usually subjected to long-term traffic load. In this paper, the design method of modular reinforced earth retaining wall is studied by theoretical analysis, numerical simulation and in-situ test, based on the reconstruction and extension project of the section from Liandu to Jinyun of 330National Road, taking the reinforced earth retaining wall of modular panel type as the research object. The reinforcement laying method is optimized and the dynamic response of vehicle under load is studied systematically. The main research contents and conclusions are as follows: 1. Combined with the topographic and geological conditions of the engineering, the modular reinforced earth retaining wall is adopted as the retaining structure of the roadbed, and the design of the retaining wall is carried out. The design of the retaining wall is based on the law of the earth pressure distribution and the requirement of the stability of the reinforced earth retaining wall. The optimization method of reinforcement length is established, and based on the engineering data, an example analysis is made. Taking the backing engineering as the research object, the numerical analysis model is established by using FLAC3D, and the deformation of reinforced earth retaining wall under static vehicle load is analyzed. The development law of earth pressure and tensile stress of steel bars. The results show that the lateral earth pressure distribution is nonlinear along the depth of the wall, and the distribution curve of the back lateral earth pressure of reinforced body is approximately linear along the depth direction of the wall. Compared with the lateral earth pressure behind the same plane wall, the lateral earth pressure after the reinforcement body is greatly affected by the position of the vehicle. By establishing the numerical analysis model, the response law of the reinforced earth retaining wall under the dynamic load of the vehicle is analyzed. The results show that both the peak value of dynamic earth pressure at the wall and the peak of acceleration at the wall reach the maximum at the top of the wall, and the peak value decreases rapidly with the driving position of the vehicle away from the wall. The field test of reinforced earth retaining wall is carried out. The stress-strain development law of retaining wall during construction and under vehicle load is tested. The results show that the measured peak value of the additional lateral earth pressure is slightly smaller than that of Boussinesq, but the position of the measured peak value is deeper than that of the theoretical value, and when the vehicle loads are on the reinforced body, the measured peak value is lower than that of the Boussinesq theory. The vehicle driving distance has little effect on the dynamic earth pressure generated by the reinforced body. When the vehicle load is on the reinforced body, the vehicle driving distance has a great influence on the size and distribution of the dynamic earth pressure in the reinforced body. The lateral earth pressure of the reinforced body is much larger than the lateral earth pressure behind the wall, whether under the static vehicle action or under the vehicle dynamic load action.
【學位授予單位】:湖南科技大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:U417.11
【參考文獻】
相關(guān)期刊論文 前10條
1 王賀;楊廣慶;劉華北;吳連海;劉偉超;熊保林;;模塊面板式土工格柵加筋土擋墻動態(tài)特性試驗研究[J];振動與沖擊;2016年07期
2 王賀;楊廣慶;熊保林;吳連海;劉華北;;模塊面板式加筋土擋墻結(jié)構(gòu)行為試驗研究[J];巖土力學;2016年02期
3 陳建峰;柳軍修;石振明;;軟弱地基剛/柔性組合墻面加筋土擋墻數(shù)值模擬[J];巖石力學與工程學報;2016年02期
4 梁根才;劉澤;葉建勝;;基于流固耦合分析的庫水位變化對公路擋土墻穩(wěn)定性影響研究[J];中外公路;2015年05期
5 陳鋮;王泉清;;L形面板加筋土擋墻拓寬舊路基的三維有限元分析[J];公路工程;2015年03期
6 蔡劍韜;;土工格柵加筋膨脹土拉拔試驗研究[J];巖土力學;2015年S1期
7 劉澤;史克友;雷勇;;重復荷載作用下土工格柵包生態(tài)袋加筋土擋墻動力特性試驗研究[J];振動與沖擊;2015年09期
8 蔣薇;蘇謙;張曉曦;周珩;;地震作用下加筋土邊坡滑裂面的確定方法[J];西南交通大學學報;2015年01期
9 周健;謝鑫波;姜炯;張姣;;包裹式加筋土擋墻的變形特性及影響因素研究[J];巖石力學與工程學報;2015年01期
10 王泉清;陳鋮;向靜靜;劉清清;;條形面板加筋土擋墻拓寬舊路基的三維數(shù)值模擬分析[J];路基工程;2014年05期
相關(guān)會議論文 前1條
1 吳景海;王玲娟;崔穎;;土工合成材料與土界面作用特性的研究[A];天津市市政(公路)工程研究院院慶五十五周年論文選集(1950~2005)下冊[C];2005年
相關(guān)博士學位論文 前2條
1 劉澤;生態(tài)型加筋土擋墻動靜力學特性試驗研究與數(shù)值分析[D];中南大學;2012年
2 楊果林;加筋土擋土結(jié)構(gòu)動力特性研究[D];中南大學;2001年
,本文編號:1997708
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/1997708.html