高速公路交通量與分布規(guī)律預(yù)測(cè)
發(fā)布時(shí)間:2018-06-03 19:25
本文選題:交通量預(yù)測(cè) + 交通分布規(guī)律預(yù)測(cè)。 參考:《河北工業(yè)大學(xué)》2015年碩士論文
【摘要】:交通量預(yù)測(cè)在公路建設(shè)項(xiàng)目研究工作具有非常重要的作用。鑒于當(dāng)下我國(guó)高速公路的一大方向轉(zhuǎn)入改造和拓寬,并成為日后比較主要的發(fā)展趨勢(shì)之一。本文基于高速公路現(xiàn)有事實(shí)特征,分“宏觀”和“微觀”兩個(gè)角度對(duì)高速公路交通量,主要是重載交通量進(jìn)行了預(yù)測(cè),為高速公路拓寬改造交通量預(yù)測(cè)工作尋找思路。根據(jù)高速公路交通特征和既有高速公路的影響,論文首先使用較為傳統(tǒng)的四階段預(yù)測(cè)分析理論對(duì)其進(jìn)行了交通量的“宏觀”方面的預(yù)測(cè)。由于車(chē)輛分布隨機(jī)性較大,采用一般的理論模型難以達(dá)到精度要求,對(duì)于高速公路還未有過(guò)對(duì)車(chē)輛分車(chē)道車(chē)輛行車(chē)規(guī)律的預(yù)測(cè),而對(duì)于重載車(chē)輛對(duì)于高速公路的影響遠(yuǎn)大于一般客車(chē)所產(chǎn)生的。所以本文從“微觀”方面著手,分車(chē)道對(duì)重載車(chē)輛分布規(guī)律進(jìn)行了預(yù)測(cè)。為此,首先提出采用灰色系統(tǒng)理論中的GM(1,1)模型對(duì)連續(xù)兩周累計(jì)調(diào)查量分布系數(shù)進(jìn)行計(jì)算,接著采取引用BP神經(jīng)網(wǎng)絡(luò),運(yùn)用MATLAB平臺(tái),經(jīng)過(guò)多次修正,實(shí)現(xiàn)對(duì)灰色預(yù)測(cè)結(jié)果的殘差進(jìn)行修正,最后將兩種方法結(jié)合的到最終結(jié)果,即為高速公路“六車(chē)道”的車(chē)道分布規(guī)律。通過(guò)對(duì)高速公路進(jìn)行現(xiàn)場(chǎng)實(shí)際調(diào)查,得到交通總量分布,預(yù)測(cè)得出重載車(chē)輛分車(chē)道行駛規(guī)律,達(dá)到擴(kuò)大通行能力的擴(kuò)容目的同時(shí)能節(jié)約經(jīng)濟(jì)成本和工程量,有效幫助決策者宏觀調(diào)控出行,為人們出行提供參考依據(jù)。同時(shí)可為今后高速公路改擴(kuò)建工程和新建工程提供理論依據(jù),分車(chē)道方法的改進(jìn)有效的提高了預(yù)測(cè)精度,把相對(duì)誤差有效減小。為日后相關(guān)交通預(yù)測(cè)以至更廣范圍的研究提供參考。
[Abstract]:Traffic volume prediction plays an important role in the research of highway construction projects. In view of the transformation and widening of expressway in China, it becomes one of the main developing trends in the future. Based on the existing characteristics of the expressway, this paper forecasts the expressway traffic volume, mainly heavy-haul traffic volume, from the two angles of "macro" and "micro", in order to find a way to forecast the traffic volume of expressway widening and reforming. According to the characteristics of expressway traffic and the influence of existing expressway, this paper first uses the traditional four-stage prediction theory to forecast the traffic volume in "macroscopic" aspect. Because of the randomness of the vehicle distribution, it is difficult to achieve the precision requirement by using the general theoretical model. The impact of heavy-haul vehicles on the highway is far greater than that of the general bus. Therefore, this paper predicts the distribution law of heavy-haul vehicles from the micro-view point of view. For this reason, this paper first puts forward to calculate the distribution coefficient of accumulative survey quantity for two consecutive weeks by using the GM1 / 1) model of grey system theory, and then uses BP neural network and MATLAB platform to calculate the distribution coefficient of the cumulative investigation quantity for two consecutive weeks, then it is revised many times by using the MATLAB platform. The residual error of the grey prediction result is corrected, and finally the two methods are combined to the final result, that is, the lane distribution law of the "six lanes" of the expressway. Through the on-the-spot investigation on the freeway, the distribution of the total traffic volume is obtained, and the driving rule of the heavy-haul vehicle is predicted. The expansion of the capacity of the heavy-haul vehicle can also save the economic cost and the engineering quantity. It can effectively help the decision makers to control travel macroscopically and provide reference basis for people to travel. At the same time, it can provide the theoretical basis for the future highway reconstruction and extension projects and new construction projects. The improvement of the driveway method can effectively improve the prediction accuracy and reduce the relative error effectively. To provide a reference for future related traffic forecasts and more extensive research.
【學(xué)位授予單位】:河北工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:U491
【參考文獻(xiàn)】
相關(guān)期刊論文 前3條
1 高為;陸百川;黃美靈;;基于小波去噪和最優(yōu)權(quán)重信息融合的短時(shí)交通量預(yù)測(cè)[J];重慶交通大學(xué)學(xué)報(bào)(自然科學(xué)版);2010年01期
2 崔功杰;王國(guó)宏;劉振獻(xiàn);;基于L-M算法改進(jìn)BP網(wǎng)絡(luò)的信息對(duì)抗能力評(píng)估[J];火力與指揮控制;2012年05期
3 方志鵬;陳小平;;BP神經(jīng)網(wǎng)絡(luò)在小信號(hào)有效值非線性誤差校正中的應(yīng)用[J];蘇州大學(xué)學(xué)報(bào)(工科版);2008年01期
,本文編號(hào):1973906
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/1973906.html
最近更新
教材專著