纖維瀝青混合料凍融劈裂試驗及其數(shù)值模擬
本文選題:瀝青混凝土 + 纖維種類; 參考:《安徽理工大學》2017年碩士論文
【摘要】:纖維瀝青混合料成分組合復雜,其復雜性則導致了纖維瀝青混合料的力學特性也隨之相應(yīng)復雜。本文研究以纖維種類、摻量以及凍融次數(shù)為參數(shù),從纖維瀝青混凝土的劈裂試驗出發(fā),評價纖維瀝青混凝土的凍融劈裂性能。通過大量的室內(nèi)試驗與理論分析,具體研究了摻加聚酯纖維、玄武巖纖維、木質(zhì)素纖維及各種纖維摻量為0.3%、0.35%、0.4%、0.45%情況下的瀝青混合料在清水作用下的水穩(wěn)定性情況,為以后纖維種類及摻量對瀝青混合料的影響做出參考。本文還建立了三維瀝青混合料的有限元劈裂模型,通過對比數(shù)值模擬結(jié)果與實測的結(jié)果兩者之間的關(guān)系,由此驗證得出建立纖維瀝青混合料馬歇爾試件有限元模型的合理性;針對纖維瀝青混合料馬歇爾試件劈裂模型數(shù)值模擬所得的應(yīng)力應(yīng)變云圖的分布情況,具體分析瀝青混合料試件的受力特性。試驗結(jié)果與數(shù)值模擬結(jié)果表明:(1)隨著凍融次數(shù)的增加,摻加纖維的瀝青混凝土試件的凍融劈裂強度降低;其主要原因是試件中的水在凍融循環(huán)過程中經(jīng)歷不斷的結(jié)冰和融化,這就直接導致試件內(nèi)部結(jié)構(gòu)的逐漸破壞。(2)隨著纖維摻量的增加,未凍融試件劈裂強度變化的基本趨勢相同,幾乎都是先上升后下降。凍融次數(shù)為2、4、6的情況下試件的劈裂強度與未凍融的規(guī)律相似。主要是因為纖維摻量過高時會產(chǎn)生結(jié)團現(xiàn)象,導致纖維與瀝青及集料拌和不均勻,劈裂強度也就隨之而降低。凍融次數(shù)相同時,不管是2、4或者6次,凍融劈裂強度最小的都是纖維摻量最小的試件。在相同的纖維摻量條件下,無論是0.3%、0.35%、0.4%還是0.45%,劈裂強度最小的都是凍融次數(shù)最多的試件。(3)纖維摻量為0.3%、0.35%、0.4%、0.45%在經(jīng)過6次凍融循環(huán)后,瀝青混凝土試件的劈裂強度都會有最佳值;在本文的試驗研究范圍內(nèi)纖維的最佳摻量為0.4%,最佳纖維為玄武巖纖維。以上兩個數(shù)據(jù)條件下,纖維的增強作用為最佳,此時試件的凍融劈裂性能最好。(4)通過對超聲波試驗數(shù)據(jù)中波速和纖維瀝青混合料馬歇爾試件強度檢測的處理結(jié)果可知,采用指數(shù)函數(shù)擬合超聲波傳播速度和瀝青混合料凍融循環(huán)后的劈裂強度,正確地反映瀝青混合料在凍融過程中的性能衰減。對于摻加聚酯纖維的試件,波速與強度的擬合公式為f = 4.42477×10-7e0.0031v,R~2 = 0.89431;對于摻加玄武巖纖維的試件,波速與強度的擬合公式為f = 1.25069×10-8e0.00467v,R^=0.86403;對于摻加木質(zhì)素纖維的試件,波速與強度的擬合公式為f=5.05944×10-11e0.00487v,R~2= 0.96903。采用超聲波法進行瀝青混合料凍融破壞試驗的研究,利用波速的變化來反映凍融破壞程度,凍融循環(huán)后試件的破壞程度與凍融循環(huán)次數(shù)有關(guān)。(5)建立了三維的摻入纖維的馬歇爾試件的ANSYS分析結(jié)構(gòu)模型,通過面面接觸的加載方式模擬瀝青混合料的劈裂試驗;基于凍融劈裂試驗結(jié)果和超聲波檢測所得到的試驗數(shù)據(jù),建立三維的纖維瀝青混凝土有限元模型;通過對數(shù)值模擬和實測結(jié)果之間的對比分析,驗證建立纖維瀝青混凝土馬歇爾試件有限元模型的合理性,得出相應(yīng)的規(guī)律。
[Abstract]:The composition of fiber bitumen mixture is complex and its complexity leads to the complexity of the mechanical properties of fiber asphalt mixture. In this paper, based on the splitting test of fiber asphalt concrete, the freeze-thaw splitting properties of fiber asphalt concrete are evaluated with the parameters of fiber type, mixing amount and freezing thawing times. In the internal test and theoretical analysis, the water stability of asphalt mixture mixed with polyester fiber, basalt fiber, lignin fiber and all kinds of fibers under the action of 0.3%, 0.35%, 0.4%, 0.45% is studied in detail, which can be used as a reference for the effect of fiber type and content on the asphalt mixture. By comparing the relationship between the numerical simulation results and the measured results, the reasonableness of establishing the finite element model of the Marshall specimen for the fiber asphalt mixture is verified by comparing the relationship between the numerical simulation results and the measured results, and the distribution of the stress and strain cloud images obtained by the numerical simulation of the splitting model of the fiber asphalt mixture Marshall specimen The results and numerical simulation results show that: (1) the freezing thawing splitting strength of the reinforced asphalt concrete specimen is reduced with the increase of the number of freeze-thaw. The main reason is that the water in the specimen is frozen and thawing continuously during the freezing and thawing cycle, which is directly caused by the freezing thawing cycle. The internal structure of the specimen is gradually destroyed. (2) with the increase of fiber content, the basic trend of splitting strength of unthawing specimens is the same, almost all of them rise first and then decrease. The splitting strength of the specimen under the condition of freezing thawing is 2,4,6 is similar to that of unfrozen thawing. With the uneven mixing of the asphalt and the aggregate, the splitting strength decreases. When the freezing and thawing times are the same, whether the freezing thawing splitting strength is the least, the minimum ratio of the freeze-thaw splitting is the least amount of fiber. Under the same fiber content, whether it is 0.3%, 0.35%, 0.4% or 0.45%, the minimum splitting strength is the test with the most freezing thawing times. (3) (3) fiber content of 0.3%, 0.35%, 0.4%, 0.45% after 6 freeze-thaw cycles, the splitting strength of asphalt concrete specimens will have the best value; in this paper, the optimum fiber content is 0.4%, the best fiber is basalt fiber. Under the two data conditions, the fiber reinforcement is the best, at this time the specimen freezing. The performance of thawing splitting is the best. (4) through the processing results of the wave velocity and the strength test of the Marshall specimen of the fiber asphalt mixture, it is found that the exponential function fitting the velocity of ultrasonic wave and the splitting strength of the asphalt mixture after the freezing and thawing cycle can correctly reflect the performance attenuation of the asphalt mixture during the freezing and thawing process. The fitting formula of wave velocity and strength is f = 4.42477 x 10-7e0.0031v, R~2 = 0.89431, and the fitting formula of wave velocity and strength is f = 1.25069 * 10-8e0.00467v, R^=0.86403 for specimens with basalt fiber, and the fitting formula of wave velocity and strength is f=5.05944 x 10-11e for the specimens added with lignin fiber. 0.00487v, R~2= 0.96903. is used to study the freezing thawing failure test of asphalt mixture by ultrasonic method, using the change of wave velocity to reflect the degree of freezing and thawing damage. The damage degree of the specimen after freezing and thawing cycle is related to the number of freezing and thawing cycles. (5) a three-dimensional structure model of Marshall specimen with a fiber is established, and the surface contact is made through the surface contact. The splitting test of asphalt mixture is simulated by loading method. Based on the test data of freezing thawing splitting test and ultrasonic testing, a three-dimensional finite element model of fiber asphalt concrete is set up. The finite element model of the Marshall specimen of fiber asphalt concrete is verified by comparison and analysis between the numerical simulation and the measured results. The rationality and the corresponding law.
【學位授予單位】:安徽理工大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:U414
【相似文獻】
相關(guān)期刊論文 前10條
1 倪良松,陳華鑫,胡長順,盧因志;纖維瀝青混合料增強作用機理分析[J];合肥工業(yè)大學學報(自然科學版);2003年05期
2 李金鋒;;纖維瀝青混合料的增強作用機理研究與應(yīng)用[J];交通世界(建養(yǎng).機械);2009年07期
3 李永睿;王建偉;;纖維瀝青混合料施工質(zhì)量的控制[J];科技創(chuàng)新導報;2010年12期
4 陳華鑫,李寧利,胡長順,張爭奇;纖維瀝青混合料路用性能[J];長安大學學報(自然科學版);2004年02期
5 袁媛,柳穎臣,呂穎釗;纖維瀝青混合料低溫性能研究[J];山西建筑;2005年03期
6 郝猛;陳華鑫;汪羅英;;纖維瀝青混合料在高速公路大修改造中的應(yīng)用[J];交通標準化;2006年01期
7 劉鐵山;;纖維瀝青混合料高溫穩(wěn)定性的灰關(guān)聯(lián)分析[J];中外公路;2006年01期
8 余芳;楊錫武;仲玉俠;;鋼纖維瀝青混合料的性能試驗研究[J];重慶交通學院學報;2006年05期
9 張宜洛;崔榮華;顧仲飛;韓森;;施工溫度對纖維瀝青混合料性能指標的影響規(guī)律研究[J];公路;2006年10期
10 丁智勇;黃杰;彭波;戴經(jīng)梁;陳忠達;;纖維瀝青混合料性能研究[J];鄭州大學學報(工學版);2007年02期
相關(guān)會議論文 前1條
1 孫學高;徐顯才;陳火生;肖明星;;上下夾層鋼纖維瀝青混合料公路路面應(yīng)用技術(shù)[A];中國公路學會橋梁和結(jié)構(gòu)工程學會一九九九年橋梁學術(shù)討論會論文集[C];1999年
相關(guān)博士學位論文 前2條
1 封基良;纖維瀝青混合料增強機理及其性能研究[D];東南大學;2006年
2 熊銳;鹽富集條件下礦物復合纖維瀝青混合料路用性能及腐蝕損傷研究[D];長安大學;2012年
相關(guān)碩士學位論文 前10條
1 李巍巍;棉秸稈纖維瀝青混合料路用性能研究[D];長安大學;2015年
2 紀方利;鹽分對纖維瀝青混合料水穩(wěn)定性影響的試驗研究[D];安徽理工大學;2016年
3 孫娣;纖維瀝青混合料凍融劈裂試驗及其數(shù)值模擬[D];安徽理工大學;2017年
4 丁智勇;纖維瀝青混合料應(yīng)用研究[D];長安大學;2004年
5 崔榮華;沙漠高速公路纖維瀝青混合料路面研究[D];長安大學;2005年
6 王清華;鋼纖維瀝青混合料性能及應(yīng)用研究[D];重慶交通大學;2007年
7 任旭;纖維瀝青混合料性能室內(nèi)試驗研究[D];長沙理工大學;2012年
8 呂鵬;蔗渣纖維瀝青混合料抗腐蝕性能試驗研究[D];廣西工學院;2012年
9 徐剛;纖維瀝青混合料增強機理及性能研究[D];大連交通大學;2012年
10 趙云;玄武巖纖維瀝青混合料力學性能的試驗與數(shù)值分析[D];大連交通大學;2013年
,本文編號:1935070
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/1935070.html