寒區(qū)隧道凍結(jié)模型試驗與溫度場特性分析
本文選題:人工凍土 切入點:模型試驗 出處:《安徽理工大學(xué)》2017年碩士論文
【摘要】:以青藏高原為代表的高海拔寒區(qū)隧道在使用過程中出現(xiàn)的凍害現(xiàn)象導(dǎo)致隧道的使用率大大降低甚至報廢。由于凍害的影響,國家投入巨資無法收回,隧道通行人民的生命安全也無法保障。本文以寒區(qū)隧道凍害為背景,開展了人工凍土模型試驗,并針對試驗數(shù)據(jù)的有限性的特點,利用基于結(jié)構(gòu)風(fēng)險最小化原理和小樣本學(xué)習(xí)方法——支持向量機算法,建立了人工凍土溫度場發(fā)展的支持向量機模型。1、通過寒區(qū)隧道模型試驗,得到了寒區(qū)隧道模型溫度變化規(guī)律:寒區(qū)隧道模型溫度變化分為兩個階段:降溫段和升溫段,本文暫時不考慮升溫段的變化規(guī)律。降溫段變化規(guī)律大致為:隨著凍結(jié)時間的增加,圍巖各測點的溫度不斷降低,不同斷面、不同測點的溫度降低速率有些差異,整體來看可以分為斷面3和其他斷面兩組。2、根據(jù)牛頓熱交換定律:物體從一種介質(zhì)流到另一種介質(zhì)的熱量和兩種介質(zhì)間的溫差成正比,初始凍結(jié)時,隧道圍巖為室內(nèi)溫度與凍結(jié)管的溫差最大,故在此時降溫速度最快,隨著凍結(jié)時間的增長,兩者間的溫差減小,故在此時降溫速度減慢;到凍結(jié)后期時,兩者的溫差很小,故隧道圍巖溫度不再變化,趨于一個穩(wěn)定值。3、位置3的降溫大致呈現(xiàn)一種對數(shù)函數(shù)減小的規(guī)律。其原因是位置3的溫度傳感器布設(shè)較多,布設(shè)比較均勻,反應(yīng)隧道圍巖溫度變化比較準(zhǔn)確;其他位置的的降溫規(guī)律大致呈現(xiàn)線性減小趨勢。4、通過對SVM法的介紹和推導(dǎo)建立了人工凍土模型試驗溫度場SVM模型。5、把不同核函數(shù)應(yīng)用到所建模型上,通過比較選出最適合的核函數(shù),然后對溫度場溫度進行預(yù)測,通過與實測數(shù)據(jù)的對比,發(fā)現(xiàn)預(yù)測值與實測值相差不大,驗證了所建模型的合理性與正確性。
[Abstract]:The freezing damage of tunnels in high altitude cold regions, represented by the Qinghai-Tibet Plateau, has led to a great reduction in the utilization rate of tunnels and even their scrapping. Because of the impact of the freezing injury, the state has invested a huge amount of money that cannot be recovered. The safety of tunnel people's lives can not be guaranteed. In this paper, the artificial frozen soil model test is carried out under the background of tunnel freezing injury in cold region, and the characteristics of the limited test data are pointed out. Based on the structural risk minimization principle and the support vector machine (SVM) algorithm, a support vector machine (SVM) model for the development of temperature field in artificial frozen soil is established, which is based on the principle of structural risk minimization and small sample learning method. The temperature variation of tunnel model in cold region is divided into two stages: the cooling section and the heating stage. In this paper, the variation law of the temperature rise section is not considered for the time being. The variation law of the cooling section is: with the increase of freezing time, the temperature of each measuring point of surrounding rock decreases continuously, and there are some differences in the temperature decreasing rate of different measuring points with different sections. As a whole, it can be divided into two groups: section 3 and other sections. 2, according to Newton's law of heat exchange: the amount of heat flowing from one medium to another is proportional to the temperature difference between the two media, initially frozen. The temperature difference between the surrounding rock of the tunnel and the freezing pipe is the largest, so the cooling speed is the fastest at this time, and with the increase of freezing time, the temperature difference between the two decreases, so the cooling speed slows down at this time, and the temperature difference between the two is very small at the later stage of freezing. Therefore, the temperature of surrounding rock of tunnel is no longer changing, and tends to be a stable value. 3. The cooling of position 3 shows a law of decreasing logarithmic function. The reason is that the temperature sensors of position 3 are arranged more evenly. The temperature change of reaction tunnel surrounding rock is more accurate; The law of cooling in other places shows a linear decreasing trend. Through the introduction and derivation of SVM method, the temperature field SVM model of artificial frozen soil model is established, and the different kernel functions are applied to the established model. By comparing and selecting the most suitable kernel function, the temperature field temperature is predicted. By comparing with the measured data, it is found that the predicted value is not different from the measured value, which verifies the rationality and correctness of the model.
【學(xué)位授予單位】:安徽理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:U456
【參考文獻】
相關(guān)期刊論文 前10條
1 陳軍浩;夏紅兵;李棟偉;;多圈管凍結(jié)壁溫度場發(fā)展及凍結(jié)管偏斜影響[J];中山大學(xué)學(xué)報(自然科學(xué)版);2016年04期
2 楊更社;榮騰龍;奚家米;申艷軍;李博融;;煤礦立井凍結(jié)壁溫度場演化規(guī)律數(shù)值模擬分析[J];地下空間與工程學(xué)報;2016年02期
3 姚紅志;張曉旭;董長松;范東方;;多年凍土區(qū)公路隧道保溫隔熱層鋪設(shè)方式及材料性能對比分析[J];中國公路學(xué)報;2015年12期
4 劉戈;陳建兵;金龍;彭惠;;多年凍土區(qū)寬幅瀝青路面結(jié)構(gòu)層溫度場的分布規(guī)律及影響[J];中外公路;2015年04期
5 侯彥東;吳青柏;孫志忠;陳繼;劉永智;;青藏鐵路碎石護坡-熱管復(fù)合措施的補強效果研究[J];冰川凍土;2015年01期
6 孫全勝;常繼峰;;基于支持向量機的多年凍土路基融沉變形預(yù)測[J];公路工程;2014年05期
7 張嘉文;張鴻儒;宋佳鵬;劉亞偉;;凍、融土中樁的水平受力特性模型對比試驗研究[J];工業(yè)建筑;2013年10期
8 胡向東;郭旺;張洛瑜;;無限大區(qū)域內(nèi)四管凍結(jié)的穩(wěn)態(tài)溫度場解析解[J];上海交通大學(xué)學(xué)報;2013年09期
9 李方政;李棟偉;韓圣銘;;液氮凍結(jié)帷幕水熱耦合溫度場數(shù)值分析及應(yīng)用[J];地下空間與工程學(xué)報;2013年03期
10 陳軍浩;;人工凍土多圈管凍融全過程溫度場模型試驗研究[J];人民長江;2013年07期
,本文編號:1669960
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/1669960.html