交通荷載作用下飽和土體中襯砌隧道系統(tǒng)的動力響應(yīng)研究
本文關(guān)鍵詞: 襯砌隧道 交通荷載 飽和土體 道床板 浮置板 鄰近隧道 出處:《南昌大學(xué)》2015年博士論文 論文類型:學(xué)位論文
【摘要】:由于鐵路建設(shè)和城市軌道交通的迅猛發(fā)展,交通荷載作用下地下隧道系統(tǒng)的動力響應(yīng)以及由此產(chǎn)生的環(huán)境影響越來越受到公眾的關(guān)注。針對富水地區(qū)中的隧道系統(tǒng),基于飽和土體的Biot理論,考慮隧道襯砌與外圍土體的作用,分析了交通荷載作用下襯砌隧道系統(tǒng)的動力響應(yīng),主要包括以下幾點內(nèi)容:1.將列車載重作為移動恒載并沿圓周平均布置,使交通荷載簡化為軸對稱荷載,把隧道襯砌視為連續(xù)彈性體,根據(jù)Helmholtz勢函數(shù)的矢量分解理論以及傅里葉積分變換解耦襯砌隧道系統(tǒng)的控制方程,結(jié)合邊界條件和連續(xù)條件求得頻率-波數(shù)域內(nèi)襯砌、土體動力響應(yīng)的解析解,然后利用傅里葉積分逆向變換求得時間-空間域內(nèi)飽和土體中襯砌隧道系統(tǒng)動力響應(yīng)的數(shù)值解。通過與相關(guān)文獻(xiàn)比較,驗證了本文方法的正確性,揭示襯砌對隧道系統(tǒng)動力響應(yīng)具有顯著影響,同時討論了荷載速度、襯砌與飽和土體的彈性模量比值、土體骨架與孔隙流體間的相互作用力參數(shù)對襯砌隧道系統(tǒng)動力響應(yīng)的影響。2.在點荷載形式的交通荷載作用下,將隧道襯砌視為Flugge薄壁圓柱殼,將點荷載、襯砌隧道系統(tǒng)的動力響應(yīng)均沿環(huán)向模態(tài)展開成傅里葉級數(shù)形式,利用Helmholtz矢量分解理論、傅里葉積分變換、邊界條件和連續(xù)條件,求解了豎向移動簡諧點荷載作用下飽和土體中襯砌隧道系統(tǒng)的動力響應(yīng),分析了動力響應(yīng)在環(huán)向的分布規(guī)律,并探討了荷載速度、荷載初始頻率對動力響應(yīng)應(yīng)的影響。研究結(jié)果表明這種方法可有效求解非軸對稱的交通荷載作用下飽和土體中襯砌隧道系統(tǒng)的動力響應(yīng)。在此基礎(chǔ)上,將道床板、浮置板和軌道視為Euler梁,利用卷積積分的傅里葉變換性質(zhì),求解了豎向簡諧點荷載作用下飽和土體中無砟軌道襯砌隧道系統(tǒng)和浮置板軌道襯砌隧道系統(tǒng)的動力響應(yīng),計算結(jié)果顯示這個方法也可以求解飽和土體中無砟軌道隧道系統(tǒng)和浮置板軌道隧道系統(tǒng)的動力響應(yīng),通過與襯砌隧道系統(tǒng)的動力響應(yīng)比較,分析了道床板、浮置板和軌道對動力響應(yīng)的作用。3.在前面研究的基礎(chǔ)上,將飽和土體中平行雙襯砌隧道系統(tǒng)分解成雙襯砌子系統(tǒng)和雙隧洞子系統(tǒng)。根據(jù)傅立葉級數(shù)展開的理論,將點荷載、動力響應(yīng)均分解成正對稱部分和反對稱部分?紤]飽和土體中兩個隧道的相互作用,并把外圍飽和土體的動力響應(yīng)轉(zhuǎn)換成兩個單隧洞系統(tǒng)動力響應(yīng)的疊加,根據(jù)兩個襯砌與土體接觸面處的連續(xù)條件和邊界條件,求解了飽和土體中左右平行、上下平行雙襯砌隧道系統(tǒng)的動力響應(yīng)。通過與單襯砌隧道系統(tǒng)的動力響應(yīng)比較發(fā)現(xiàn)鄰近隧道對飽和土體中雙襯砌隧道系統(tǒng)的動力響應(yīng)具有顯著影響,并討論了荷載頻率、隧道間距等對動力響應(yīng)的影響。
[Abstract]:Due to the rapid development of railway construction and urban rail transit. The dynamic response of underground tunnel system under traffic load and its environmental impact have attracted more and more attention of the public. For the tunnel system in water-rich area, the Biot theory based on saturated soil is used. Considering the effect of tunnel lining and surrounding soil, the dynamic response of lining tunnel system under traffic load is analyzed, which includes the following points: 1. Take the train load as moving dead load and arrange along the circular average. The traffic load is simplified to axisymmetric load and the tunnel lining is regarded as a continuous elastic body. According to the vector decomposition theory of Helmholtz potential function and the control equation of the decoupled lining tunnel system with Fourier integral transform, the internal lining in frequency-wavenumber domain is obtained by combining the boundary condition and the continuity condition. The analytical solution of soil dynamic response and the numerical solution of dynamic response of lining tunnel system in saturated soil in time-space domain are obtained by using Fourier integral inverse transform. The correctness of this method is verified and the influence of lining on the dynamic response of tunnel system is revealed. At the same time, the load velocity and the ratio of elastic modulus of lining to saturated soil are discussed. The influence of interaction force parameters between soil skeleton and pore fluid on the dynamic response of lining tunnel system. 2. Under the traffic load of point load, the tunnel lining is regarded as Flugge thin-walled cylindrical shell. The point load and the dynamic response of the lining tunnel system are all expanded into Fourier series form along the toroidal mode, using the Helmholtz vector decomposition theory, Fourier integral transform, boundary conditions and continuous conditions. The dynamic response of lining tunnel system in saturated soil under the action of vertical moving harmonic point load is solved. The distribution of dynamic response in circumferential direction is analyzed and the load velocity is discussed. The results show that this method can effectively solve the dynamic response of lining tunnel system in saturated soil under non-axisymmetric traffic load. The track bed plate, floating plate and track are regarded as Euler beams, and the Fourier transform property of convolution integral is used. The dynamic responses of ballastless track lining tunnel system and floating slab track lining tunnel system in saturated soil under vertical harmonic point loading are solved. The results show that this method can also solve the dynamic response of ballastless track tunnel system and floating slab track tunnel system in saturated soil. The effect of floating plate and track on dynamic response. 3. Based on the previous study. The parallel double lining tunnel system in saturated soil is decomposed into double lining subsystem and double tunnel subsystem. The dynamic response is decomposed into normal symmetric part and antisymmetric part. Considering the interaction of two tunnels in saturated soil, the dynamic response of the peripheral saturated soil is transformed into the superposition of the dynamic response of two single tunnel systems. According to the continuous condition and boundary condition of the interface between two linings and soil, the left and right parallelism in saturated soil is solved. By comparing with the dynamic response of single lining tunnel system, it is found that the adjacent tunnel has a significant effect on the dynamic response of double lining tunnel system in saturated soil. The influence of load frequency and tunnel spacing on dynamic response is also discussed.
【學(xué)位授予單位】:南昌大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2015
【分類號】:U451
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 劉中憲;梁建文;張賀;;彈性半空間中襯砌隧道對瑞利波的散射[J];巖石力學(xué)與工程學(xué)報;2011年08期
2 王明斌;李術(shù)才;蔚立元;秦昊;;熱力響應(yīng)下襯砌隧道附加應(yīng)力場的敏感性分析[J];山東大學(xué)學(xué)報(工學(xué)版);2009年04期
3 林承華;運營無襯砌隧道拱部加固噴錨施工技術(shù)優(yōu)化[J];鐵道運營技術(shù);1995年04期
4 李厚祥;曾三海;吳安清;陳月順;;自密實防水混凝土襯砌隧道抗?jié)B特性的數(shù)值分析[J];武漢理工大學(xué)學(xué)報;2008年05期
5 侯龍;鄭志明;伍川生;;重慶地區(qū)無襯砌隧道病害整治措施研究[J];工程勘察;2009年10期
6 趙德安,雷曉燕,SWOBODA G;單、雙層襯砌隧道的非線性有限元分析[J];中國公路學(xué)報;2003年01期
7 周峰;仇文革;張俊儒;;單雙層襯砌隧道的線性有限元分析[J];四川建筑;2007年05期
8 王桂芳;無襯砌隧道圍巖應(yīng)力的計算[J];土木工程學(xué)報;1965年02期
9 高華喜;聞敏杰;;半封閉分?jǐn)?shù)導(dǎo)數(shù)粘彈性襯砌隧道的頻域響應(yīng)[J];固體力學(xué)學(xué)報;2012年06期
10 梁建文,紀(jì)曉東,Vincent W Lee;地下圓形襯砌隧道對沿線地震動的影響(II):數(shù)值結(jié)果[J];巖土力學(xué);2005年05期
相關(guān)會議論文 前5條
1 姜領(lǐng)發(fā);焦玉勇;;半空間多孔介質(zhì)中圓形襯砌隧道的動態(tài)響應(yīng)[A];隧道、地下工程及巖石破碎理論與應(yīng)用——隧道、地下工程及巖石破碎學(xué)術(shù)研討會論文集[C];2007年
2 姜領(lǐng)發(fā);焦玉勇;;半空間多孔介質(zhì)中圓形襯砌隧道的動態(tài)響應(yīng)[A];隧道、地下工程及巖石破碎學(xué)術(shù)研討會論文集[C];2007年
3 李厚祥;曾三海;陳月順;;自密實防水混凝土襯砌隧道足尺模型試驗[A];隧道、地下工程及巖石破碎學(xué)術(shù)研討會論文集[C];2007年
4 李厚祥;曾三海;陳月順;;自密實防水混凝土襯砌隧道足尺模型試驗[A];隧道、地下工程及巖石破碎理論與應(yīng)用——隧道、地下工程及巖石破碎學(xué)術(shù)研討會論文集[C];2007年
5 王明斌;李術(shù)才;蔚立元;秦昊;;熱力響應(yīng)下襯砌隧道附加應(yīng)力場的敏感性分析[A];全國地下工程超前地質(zhì)預(yù)報與災(zāi)害治理學(xué)術(shù)及技術(shù)研討會論文集(Ⅰ)[C];2009年
相關(guān)博士學(xué)位論文 前1條
1 黃曉吉;交通荷載作用下飽和土體中襯砌隧道系統(tǒng)的動力響應(yīng)研究[D];南昌大學(xué);2015年
,本文編號:1460332
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/1460332.html