拱橋在線監(jiān)測系統(tǒng)及預(yù)警指標(biāo)體系研究與實(shí)踐
本文關(guān)鍵詞:拱橋在線監(jiān)測系統(tǒng)及預(yù)警指標(biāo)體系研究與實(shí)踐 出處:《云南大學(xué)》2015年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 傳感器布置 結(jié)構(gòu)溫度效應(yīng) 神經(jīng)網(wǎng)絡(luò) 損傷識別 預(yù)警指標(biāo)
【摘要】:伴隨著全國交通基礎(chǔ)建設(shè)的不斷完善,如何保證已建工程的健康運(yùn)營便成了重中之重。近年來,隨著橋梁損傷評估理論、傳感技術(shù),傳輸技術(shù)和計(jì)算機(jī)技術(shù)的發(fā)展,國內(nèi)許多重要的橋梁已實(shí)現(xiàn)了SHMS(健康監(jiān)測系統(tǒng))的布設(shè),在橋梁的養(yǎng)護(hù)運(yùn)營中起到了重要作用。 針對不同橋梁健康監(jiān)測重點(diǎn)的不同,其SHMS包含的內(nèi)容也不盡相同,一般情況下橋梁的SHMS包括傳感器的布置、數(shù)據(jù)采集傳輸系統(tǒng)、數(shù)據(jù)處理系統(tǒng)和橋梁預(yù)警評估體系。本文針對實(shí)際工程項(xiàng)目著重研究了基于危險(xiǎn)控制截面的傳感器布置方法、傳輸數(shù)據(jù)的溫度修正、BP神經(jīng)網(wǎng)絡(luò)的損傷識別法和分級預(yù)警指標(biāo)限值的設(shè)定,主要研究內(nèi)容如下: (1)根據(jù)上承式空腹拱橋的受力特點(diǎn)進(jìn)行危險(xiǎn)性分析,將可靠度較低、受力較大的危險(xiǎn)截面位置作為傳感器布置的控制測點(diǎn)位置。然后基于誤差傳遞最小準(zhǔn)則和彎曲應(yīng)變能的方法分別對T梁和主拱圈的測點(diǎn)選擇進(jìn)行了計(jì)算分析。 (2)在傳感器測試原理的基礎(chǔ)上,著重研究了傳感器所測構(gòu)件在整體結(jié)構(gòu)中的熱效應(yīng)系數(shù)β值,在無法完全獲取實(shí)時溫度場的條件下,通過不同構(gòu)件由于溫差作用導(dǎo)致的構(gòu)件與構(gòu)件之間相互作用大小來確定β值,并為各個測點(diǎn)處的修正系數(shù)β提出了溫度效應(yīng)矩陣的計(jì)算方法。 (3)由于實(shí)際的傳感器數(shù)據(jù)采集系統(tǒng),是一種對車輛通行中橋梁響應(yīng)數(shù)據(jù)的抽樣檢驗(yàn),所以為了接近這種隨機(jī)抽樣行為,把移動荷載時程分析數(shù)據(jù)作為神經(jīng)網(wǎng)絡(luò)的訓(xùn)練樣本,進(jìn)行了BP神經(jīng)網(wǎng)絡(luò)橋梁損傷識別的研究。 (4)根據(jù)橋梁當(dāng)前的技術(shù)狀況等級確定其極限承載能力,結(jié)合交通量活載修正系數(shù)設(shè)定了橙色和紅色兩級安全預(yù)警指標(biāo)限值。
[Abstract]:With the continuous improvement of the national transportation infrastructure, how to ensure the healthy operation of the built projects has become the top priority. In recent years, with the bridge damage assessment theory, sensing technology. With the development of transmission technology and computer technology, many important bridges in China have been installed in SHMS (Health Monitoring system), which plays an important role in the maintenance and operation of bridges. According to the different emphasis of bridge health monitoring, its SHMS contains different contents. In general, the bridge SHMS includes sensor layout, data acquisition and transmission system. Data processing system and bridge early warning evaluation system. This paper focuses on the sensor layout method based on hazard control section and the temperature correction of transmission data for actual engineering projects. The damage identification method of BP neural network and the setting of the limit value of grading warning index are studied as follows: 1) according to the stress characteristics of the upper bearing hollow arch bridge, the reliability of the bridge is low. The position of dangerous section with large force is used as the control point position of sensor arrangement, and then the selection of measuring points of T beam and main arch ring is calculated and analyzed based on the minimum error transfer criterion and the method of bending strain energy. 2) based on the principle of sensor testing, the thermal effect coefficient 尾 value of the component measured by the sensor in the whole structure is studied emphatically, under the condition that the real time temperature field can not be completely obtained. The value of 尾 is determined by the interaction between component and component caused by different component temperature difference, and the calculation method of temperature effect matrix is put forward for the correction coefficient 尾 of each measuring point. Because the actual sensor data acquisition system is a sampling inspection of bridge response data in vehicle traffic, so to approach this random sampling behavior. Taking the moving load time history analysis data as the training sample of neural network, the research of BP neural network bridge damage identification is carried out. According to the current technical status of the bridge, the ultimate bearing capacity of the bridge is determined, and the orange and red safety warning index limits are set up in combination with the traffic volume live load correction coefficient.
【學(xué)位授予單位】:云南大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:U448.22;U446
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 劉鈺杰;徐玉曉;劉云龍;;橋梁預(yù)警系統(tǒng)中的預(yù)警指標(biāo)研究及模型試驗(yàn)[J];山東交通學(xué)院學(xué)報(bào);2010年02期
2 王蕾;侯吉林;歐進(jìn)萍;;基于荷載形函數(shù)的大跨橋梁結(jié)構(gòu)移動荷載識別[J];計(jì)算力學(xué)學(xué)報(bào);2012年02期
3 冉志紅;;RBF神經(jīng)網(wǎng)絡(luò)方法在斜拉橋中跨合龍中的應(yīng)用[J];山西建筑;2008年33期
4 蘇高利,鄧芳萍;論基于MATLAB語言的BP神經(jīng)網(wǎng)絡(luò)的改進(jìn)算法[J];科技通報(bào);2003年02期
5 朱宏平,張?jiān)?基于自適應(yīng)BP神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)損傷檢測[J];力學(xué)學(xué)報(bào);2003年01期
6 伊廷華;張旭東;李宏男;;基于改進(jìn)猴群算法的傳感器優(yōu)化布置方法研究[J];計(jì)算力學(xué)學(xué)報(bào);2013年02期
7 李翔;朱全銀;;Adaboost算法改進(jìn)BP神經(jīng)網(wǎng)絡(luò)預(yù)測研究[J];計(jì)算機(jī)工程與科學(xué);2013年08期
8 劉鈺杰;張克波;李胡生;;橋梁預(yù)警系統(tǒng)中兩種損傷識別方法的對比分析[J];上海應(yīng)用技術(shù)學(xué)院學(xué)報(bào)(自然科學(xué)版);2008年03期
9 蘭海,史家鈞;灰色關(guān)聯(lián)分析與變權(quán)綜合法在橋梁評估中的應(yīng)用[J];同濟(jì)大學(xué)學(xué)報(bào)(自然科學(xué)版);2001年01期
10 繆長青;李愛群;吉林;馮兆祥;;大跨纜索支承型橋梁健康監(jiān)測與評估系統(tǒng)的設(shè)計(jì)研究[J];特種結(jié)構(gòu);2009年02期
相關(guān)博士學(xué)位論文 前4條
1 孫小猛;基于模態(tài)觀測的結(jié)構(gòu)健康監(jiān)測的傳感器優(yōu)化布置方法研究[D];大連理工大學(xué);2009年
2 廖碧海;拱橋評估與加固的理論和實(shí)踐研究[D];華中科技大學(xué);2009年
3 郭風(fēng)琪;在役石拱橋評估與加固關(guān)鍵技術(shù)研究[D];中南大學(xué);2012年
4 侯忠明;鋼—混凝土結(jié)合梁橋動力性能及損傷識別的理論分析與模型試驗(yàn)研究[D];北京交通大學(xué);2013年
,本文編號:1429153
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/1429153.html