大跨度鋼管混凝土系桿拱橋的靜動(dòng)力研究及關(guān)鍵節(jié)點(diǎn)應(yīng)力分析
本文關(guān)鍵詞:大跨度鋼管混凝土系桿拱橋的靜動(dòng)力研究及關(guān)鍵節(jié)點(diǎn)應(yīng)力分析 出處:《合肥工業(yè)大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 鋼管混凝土系桿拱橋 靜力分析 強(qiáng)度破壞 動(dòng)力分析 地震響應(yīng)
【摘要】:橋梁上部結(jié)構(gòu)左右非對(duì)稱的布置形式會(huì)對(duì)結(jié)構(gòu)的動(dòng)靜力行為和地震響應(yīng)產(chǎn)生怎樣的影響,同時(shí)拱腳節(jié)點(diǎn)的具體受力和破壞情況,都是橋梁工作者十分關(guān)注的問題。本文以某在建鋼管混凝土系桿拱橋?yàn)楣こ瘫尘?針對(duì)其上部結(jié)構(gòu)左右非對(duì)稱的布置特點(diǎn),建立全橋模型,對(duì)其進(jìn)行動(dòng)靜力分析和彈性分析,并對(duì)拱腳的受力和破壞做了重點(diǎn)分析。本文的主要研究?jī)?nèi)容如下:(1)使用Midas Civil建立全橋模型,并對(duì)其做靜力分析,得到了橋梁模型在五種工況下的內(nèi)力和位移分布情況。結(jié)果表明:拱肋處于全截面受壓狀態(tài),系梁上各部位受力相對(duì)較小且均勻,都在規(guī)定容許的范圍內(nèi);恒載對(duì)結(jié)構(gòu)內(nèi)力的影響最大,可占組合荷載總效應(yīng)的70%~85%;橋梁上部結(jié)構(gòu)左右非對(duì)稱的布置形式,對(duì)結(jié)構(gòu)的受力分布有較大影響,但左右兩側(cè)位移基本相同,線性基本不受影響。(2)使用ANSYS軟件建立拱腳結(jié)構(gòu)的實(shí)體有限元模型,模擬了其在彎矩最大工況下和軸力最大工況下的應(yīng)力分布狀況,同時(shí)結(jié)合強(qiáng)度破壞理論,找出了最有可能產(chǎn)生破壞的位置。結(jié)果表明:拱腳總體處于受壓狀態(tài),且應(yīng)力分布較為均勻,滿足設(shè)計(jì)要求;在變截面處,出現(xiàn)了應(yīng)力集中現(xiàn)象,且上述位置也是拱腳結(jié)構(gòu)最有可能產(chǎn)生破壞的部位;拉應(yīng)力主要出現(xiàn)在拱肋支架拆除階段即拱肋彎矩最大時(shí),在運(yùn)營(yíng)階段,即軸力最大工況下,拱腳總體受力合理,應(yīng)力始終滿足規(guī)范要求。(3)使用Midas Civil對(duì)全橋模型做動(dòng)力分析,研究其動(dòng)力特性,結(jié)果表明:在橋梁的自振響應(yīng)中,拱肋的振動(dòng)變形最大,其橫向剛度和穩(wěn)定性都最差的,豎向的累積振型參與質(zhì)量最小;豎向整體剛度最大,橫向整體剛度最小,縱向整體剛度居中;同時(shí)橋梁結(jié)構(gòu)左右非對(duì)稱布置,對(duì)橋梁的動(dòng)力響應(yīng)產(chǎn)生了的影響。(4)使用Midas Civil采用反應(yīng)譜法對(duì)全橋模型做彈性分析,模擬了其在縱向、橫向、豎向、縱向+橫向、縱向+豎向和橫向+豎向六種工況下的地震響應(yīng)。結(jié)果表明:對(duì)地震波進(jìn)行組合輸入在抗震分析中是必要的;拱肋橫向剛度相對(duì)較小,其面外穩(wěn)定是抗震的薄弱環(huán)節(jié);當(dāng)豎向和縱向組合輸入時(shí),縱向抗震最不利,當(dāng)橫向和縱向組合輸入時(shí),橫向抗震最不利;橋梁上部結(jié)構(gòu)的左右非對(duì)稱布置,主要對(duì)拱肋和橋墩的受力產(chǎn)生影響,對(duì)橋梁的整體穩(wěn)定產(chǎn)生不利影響,但對(duì)拱肋和橋墩的位移變形影響不大。本文對(duì)橋梁左右非對(duì)稱布置下的分析結(jié)果可為今后相似橋梁的設(shè)計(jì)提供參考。
[Abstract]:The bridge superstructure layout about asymmetric structure on the static and dynamic behavior and seismic response to the effect of concrete, stress and damage the arch foot node, is a bridge worker pays close attention to the problem. In this paper in the construction of steel tube concrete arch bridge as the engineering background, arranged according to the characteristics of the upper asymmetrical structure, establish the model of the whole bridge, the analysis of static analysis and elasticity, and the arch foot stress and damage is analyzed. The main research contents of this paper are as follows: (1) using Midas Civil to establish the model of the whole bridge, and the static analysis, obtained the bridge the model in five conditions of the internal force and displacement distribution. The results showed that: in the total cross section of arch rib beam on compression, each part of force is relatively small and uniform, are within allowable range; constant load on the internal force of the structure The biggest impact load can be accounted for by the combination of the total effect of 70% ~ 85%; layout of bridge superstructure asymmetrical, the structure has a great influence on the stress distribution of the left and right sides, but basically the same basic linear displacement, is not affected. (2) the establishment of arch foot structure finite element model using ANSYS software, simulation the maximum bending moment and axial force under the condition of the maximum under the condition of stress distribution, combined with the strength theory, find out the most possible damage position. The results show that the arch foot in the overall state of compression, and the stress distribution is uniform, meet the design requirements; in cross-section, the the phenomenon of stress concentration, and the location is also the arch structure is most likely to produce destructive parts; tensile stress occurs mainly in arch rib arch rib support removal stage is the maximum bending moment, axial force in the operation stage, namely the overall condition of arch foot Reasonable stress, stress always satisfy the standard requirement. (3) using Midas Civil to do dynamic analysis of the whole bridge model to study the dynamic characteristics, the results showed that: in the bridge vibration response, the maximum deformation vibration of arch rib, the lateral stiffness and stability are the worst, the cumulative vertical vibration type participate in the quality of the minimum; vertical stiffness, lateral stiffness of the overall minimum longitudinal stiffness of bridge structure around the middle; at the same time, non symmetrical layout, influence the bridge dynamic response produced. (4) the use of Midas Civil by using the response spectrum method of elastic analysis of the whole bridge model, simulate the longitudinal horizontal, vertical, longitudinal and transverse, longitudinal and vertical, and horizontal and vertical seismic response under six different conditions. The results show that the combination of input in seismic analysis is necessary for the seismic wave; arch rib lateral stiffness is relatively small, the out of plane stability is a weak link in the earthquake; When the vertical and longitudinal combination of input, the most unfavorable longitudinal seismic, horizontal and vertical combination as input, the most unfavorable transverse earthquake; bridge superstructure asymmetrical arrangement of main arch rib and bridge pier impact force, adversely affect the overall stability of the bridge, but the displacement of the arch rib and pier the deformation has little effect on the bridge. This paper analysis about non symmetrical arrangement of the results can provide a reference for the future design of similar bridges.
【學(xué)位授予單位】:合肥工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:U448.22
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 崔鳳坤;朱誼彪;杜朋;徐岳;;鋼管混凝土系桿拱橋拱腳一致多尺度建模及分析[J];江蘇大學(xué)學(xué)報(bào)(自然科學(xué)版);2017年02期
2 趙人達(dá);張正陽;;我國(guó)鋼管混凝土勁性骨架拱橋發(fā)展綜述[J];橋梁建設(shè);2016年06期
3 陳康明;吳慶雄;陳寶春;黃漢輝;袁輝輝;;中日鋼拱橋發(fā)展現(xiàn)狀調(diào)查與對(duì)比分析[J];中外公路;2016年03期
4 魏俊鋒;;下承式鋼管混凝土剛架系桿拱橋拱腳應(yīng)力分析[J];公路交通科技(應(yīng)用技術(shù)版);2016年06期
5 羅慧苓;;系桿拱拱腳節(jié)點(diǎn)應(yīng)力有限元分析[J];福建建筑;2016年03期
6 周曉雨;;拱腳開裂對(duì)拱橋靜力特征影響的分析[J];科技經(jīng)濟(jì)導(dǎo)刊;2016年04期
7 王嘉宏;;下承式鋼管混凝土拱橋抗震性能研究[J];內(nèi)蒙古科技與經(jīng)濟(jì);2015年14期
8 肖春;崔寧;;下承式鋼拱橋的局部分析[J];城市道橋與防洪;2014年08期
9 張乃明;;鐵路鋼管混凝土系桿拱橋動(dòng)力特性及地震響應(yīng)分析[J];國(guó)防交通工程與技術(shù);2014年03期
10 肖光清;李傳習(xí);李斌;;梁拱組合體系橋拱腳局部受力分析[J];公路與汽運(yùn);2014年01期
相關(guān)博士學(xué)位論文 前5條
1 馬伊碩;徐變對(duì)大跨度鋼管混凝土拱橋靜力及動(dòng)力可靠性的影響研究[D];北京交通大學(xué);2013年
2 郭風(fēng)琪;在役石拱橋評(píng)估與加固關(guān)鍵技術(shù)研究[D];中南大學(xué);2012年
3 孫國(guó)富;大跨度鋼管混凝土拱橋日照溫度效應(yīng)理論及應(yīng)用研究[D];山東大學(xué);2010年
4 吳玉華;大跨度鋼管混凝土拱橋抗震性能及動(dòng)力穩(wěn)定研究[D];浙江大學(xué);2009年
5 崔軍;大跨度鋼管混凝土拱橋受力性能分析[D];浙江大學(xué);2003年
相關(guān)碩士學(xué)位論文 前10條
1 郭郅威;鋼管混凝土拱橋靜動(dòng)力力學(xué)性能分析[D];北京交通大學(xué);2016年
2 胡凱強(qiáng);三跨自錨式鋼管混凝土系桿拱橋的靜力和穩(wěn)定性分析[D];合肥工業(yè)大學(xué);2016年
3 李俠;下承式鋼箱系桿拱橋整體與局部分析及疲勞壽命預(yù)測(cè)[D];合肥工業(yè)大學(xué);2016年
4 謝朋林;鋼管混凝土系桿拱橋計(jì)算分析與研究[D];合肥工業(yè)大學(xué);2016年
5 李季;大跨度鋼管混凝土拱橋靜動(dòng)力響應(yīng)分析[D];西南交通大學(xué);2016年
6 楊召召;鐵路下承式鋼管混凝土系桿拱橋靜動(dòng)力力學(xué)性能研究[D];石家莊鐵道大學(xué);2015年
7 李雅香;城市非對(duì)稱外傾拱肋鋼拱橋受力特性研究[D];西南交通大學(xué);2014年
8 溫澤鵬;簡(jiǎn)支下承式鋼管混凝土拱橋動(dòng)力響應(yīng)研究[D];太原理工大學(xué);2014年
9 張國(guó)揚(yáng);異型鋼管混凝土拱橋靜動(dòng)力計(jì)算分析研究[D];吉林大學(xué);2013年
10 楊晴;鋼管混凝土拱橋靜、動(dòng)力性能優(yōu)化方法研究[D];中南大學(xué);2013年
,本文編號(hào):1380053
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/1380053.html