基于Abaqus的PEO-LiX與鋁陽(yáng)極鍵合應(yīng)力應(yīng)變模擬研究
本文選題:MEMS 切入點(diǎn):陽(yáng)極鍵合 出處:《太原科技大學(xué)》2017年碩士論文 論文類(lèi)型:學(xué)位論文
【摘要】:微機(jī)電系統(tǒng)(MEMS)的出現(xiàn)是源于微型制造技術(shù)的發(fā)展。它的出現(xiàn)也開(kāi)辟了一個(gè)新型的產(chǎn)業(yè)和領(lǐng)域。MEMS封裝技術(shù)是目前最重要的任務(wù)之一,也是MEMS能否走向國(guó)際化市場(chǎng)和在生產(chǎn)中廣泛應(yīng)用的影響因素之一。陽(yáng)極鍵合技術(shù)作為MEMS器件加工的主要鍵合技術(shù)之一,被廣泛應(yīng)用于各個(gè)領(lǐng)域。目前實(shí)現(xiàn)了多種功能材料之間的鍵合,如玻璃與硅、陶瓷與金屬。而高分子固體電解質(zhì)克服了玻璃和陶瓷抗沖擊性差等缺點(diǎn),其抗腐蝕、致密、質(zhì)輕和塑性好等優(yōu)點(diǎn)應(yīng)用在陽(yáng)極鍵合技術(shù)中有很大的前景。為了促進(jìn)陽(yáng)極鍵合技術(shù)在微機(jī)電系統(tǒng)封裝環(huán)節(jié)的使用,開(kāi)發(fā)一種高分子固體電解質(zhì)代替原有的封裝鍵合材料。設(shè)計(jì)利用聚氧化乙烯(PEO)作為基體,堿金屬鋰鹽(LiClO4、LiPF6、LiBF4)作為電解質(zhì)材料,利用高能球磨法對(duì)材料混粉進(jìn)行研磨,使之充分絡(luò)合,并分析其在不同制備參數(shù)下材料導(dǎo)電性的變化。最終利用PEO與LiClO4按質(zhì)量比為10:1,在球磨轉(zhuǎn)速為250 r/min、球磨時(shí)間為8小時(shí)、球料比為7:1時(shí),所得材料導(dǎo)電性最佳。將鋁箔與所制備的高分子固體電解質(zhì)PEO-LiClO4進(jìn)行陽(yáng)極鍵合試驗(yàn),分析健合界面,有過(guò)渡層產(chǎn)生,這也是陽(yáng)極鍵合成功的關(guān)鍵。說(shuō)明所制備離子導(dǎo)電聚合物PEO-LiClO4滿足陽(yáng)極鍵合要求。采用有限元分析軟件Abaqus,以高分子固體電解質(zhì)與鋁單層鍵合為基礎(chǔ),分析研究陽(yáng)極鍵合后的冷卻過(guò)程中所產(chǎn)生的殘余應(yīng)力和變形,研究分析可知:鍵合試件的變形從上表面到下表面逐漸增大,越遠(yuǎn)離中心其變形量越大。鍵合試件的等效應(yīng)力在過(guò)渡層上最大,且從中間過(guò)渡層向高分子固體電解質(zhì)層和鋁層急劇減小。對(duì)不同的過(guò)渡層厚度、鍵合結(jié)構(gòu)、冷卻時(shí)間、鍵合溫度(冷卻初始溫度)情況下鍵合試件進(jìn)行數(shù)值模擬,通過(guò)數(shù)據(jù)分析軟件Origin對(duì)所得到的最大變形和最大應(yīng)力值進(jìn)行分組對(duì)比以及對(duì)所得的有限的數(shù)據(jù)進(jìn)行數(shù)學(xué)建模和曲線擬合、函數(shù)推導(dǎo)。研究分析可知:試件的變形隨著鍵合試件中間過(guò)度層、鍵合溫度的增大而增大;試件鍵合界面應(yīng)力隨著鍵合試件中間過(guò)度層厚度的減小,鍵合溫度的增大而增大。鍵合結(jié)構(gòu)為圓形結(jié)構(gòu)比方形結(jié)構(gòu)可獲得更小變形,方形結(jié)構(gòu)比圓形結(jié)構(gòu)可獲得更小鍵合界面的應(yīng)力;鍵合后PEO-LiClO4層發(fā)生塑性變形,在鋁層和中間過(guò)渡層屬在材料的彈性形變內(nèi),發(fā)生彈性形變。
[Abstract]:The emergence of MEMS (MEMS) is a result of the development of micro manufacturing technology. It also opens up a new industry and field. MEMS packaging technology is one of the most important Ren Wuzhi at present. The anodic bonding technology is one of the main bonding technologies in the processing of MEMS devices, and it is also one of the factors that influence whether MEMS can move to the international market and be widely used in production. It has been widely used in various fields. At present, the bonding between various functional materials, such as glass and silicon, ceramics and metals, has been realized. The polymer solid electrolyte has overcome the disadvantages of poor impact resistance of glass and ceramics, and its corrosion resistance is dense. In order to promote the application of anode bonding technology in MEMS packaging, the advantages of light weight and good plasticity have great prospects. A polymer solid electrolyte was developed to replace the original encapsulation bonding material. Poly (ethylene oxide) (PEO) was used as matrix and alkaline metal LiClO _ 4 (LiCl _ 4) LiPF6O _ (6) LiBF _ 4) as electrolyte material. The powder was ground by high-energy ball milling method to make it fully complexate. Finally, when the mass ratio of PEO and LiClO4 is 10: 1, the milling speed is 250rmin, the milling time is 8 hours and the ratio of ball to material is 7: 1. The anode bonding test of aluminum foil with the prepared polymer solid electrolyte (PEO-LiClO4) was carried out to analyze the bonding interface and the transition layer was produced. This is also the key to the success of anodic bonding. It is shown that the ionic conductive polymer PEO-LiClO4 can meet the requirements of anodic bonding. The finite element analysis software Abaqusis used to bond solid polymer electrolytes with aluminum monolayer. The residual stress and deformation produced by the cooling process after the anode bonding are analyzed. The results show that the deformation of the bonding specimen increases gradually from the upper surface to the lower surface. The higher the center, the greater the deformation. The equivalent stress of the bonding specimen is the largest in the transition layer, and the transition layer from the intermediate transition layer to the polymer solid electrolyte layer and aluminum layer decreases sharply. For different thickness of transition layer, bonding structure, cooling time, In the case of bonding temperature (cooling initial temperature), the bonding specimen is numerically simulated. The maximum deformation and maximum stress are grouped and compared by the data analysis software Origin, and the finite data are modeled and fitted by the curve. The results show that the deformation of the specimen increases with the increase of the bonding temperature and the interfacial stress decreases with the thickness of the intermediate layer of the bonding specimen. The bonding temperature increases with the increase of the bonding temperature. The circular structure can obtain smaller deformation than the square structure, and the square structure can obtain the stress of the smaller bonding interface than the circular structure, and the plastic deformation of the PEO-LiClO4 layer occurs after bonding. Elastic deformation occurs in the aluminum layer and the intermediate transition layer within the elastic deformation of the material.
【學(xué)位授予單位】:太原科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TH-39
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李雪梅;王春玲;;微機(jī)電系統(tǒng)的未來(lái)趨勢(shì)[J];科教文匯(下旬刊);2016年04期
2 馮帆;;微機(jī)電系統(tǒng)的發(fā)展與應(yīng)用[J];科技創(chuàng)新與應(yīng)用;2015年19期
3 劉錦;;微機(jī)電系統(tǒng)技術(shù)的發(fā)展趨勢(shì)研究[J];機(jī)電產(chǎn)品開(kāi)發(fā)與創(chuàng)新;2008年04期
4 劉翠榮;孟慶森;魯小瑩;劉子建;;ZrO_2電解質(zhì)陶瓷與Al的陽(yáng)極鍵合連接機(jī)理分析[J];機(jī)械工程學(xué)報(bào);2008年05期
5 潘開(kāi)林;李鵬;寧葉香;顏毅林;;微機(jī)電系統(tǒng)封裝技術(shù)[J];微細(xì)加工技術(shù);2008年01期
6 陳仕國(guó);戈早川;楊海朋;白曉軍;;聚合物基電子封裝復(fù)合材料研究進(jìn)展[J];宇航材料工藝;2007年05期
7 葛文勛;叢鵬;;微機(jī)電系統(tǒng)發(fā)展動(dòng)向[J];納米技術(shù)與精密工程;2007年03期
8 徐軍民;王瑞金;楊婭君;;微機(jī)電系統(tǒng)磁流體壓力微傳感器[J];機(jī)電工程;2007年04期
9 段柏華;曲選輝;林冰濤;秦明禮;程彤;;Invar合金電子封裝零件的制備及性能[J];電子元件與材料;2007年04期
10 曹欣;李宏;杜蕓;;陽(yáng)極鍵合強(qiáng)度及其評(píng)價(jià)方法[J];傳感器與微系統(tǒng);2007年03期
相關(guān)博士學(xué)位論文 前2條
1 王立仕;鋰離子電池納米復(fù)合聚合物電解質(zhì)的制備及性能研究[D];北京化工大學(xué);2009年
2 朱福龍;基于工藝力學(xué)的MEMS封裝若干基礎(chǔ)問(wèn)題研究[D];華中科技大學(xué);2007年
相關(guān)碩士學(xué)位論文 前5條
1 南粵;離子導(dǎo)電聚合物與鋁陽(yáng)極鍵合界面應(yīng)力應(yīng)變數(shù)值模擬研究[D];太原科技大學(xué);2015年
2 程琳;高能球磨法制備Mg_2SiO_4、AWO_4(A=Ca,,Ba,Sr)納米粉體及其陶瓷微波介電性能的研究[D];陜西師范大學(xué);2012年
3 賈托勝;五層玻璃與鋁靜電鍵合機(jī)理及應(yīng)力數(shù)值模擬[D];太原科技大學(xué);2011年
4 郭勁言;SiO_2-Na2O-AlO功能玻璃與金屬的共陽(yáng)極鍵合試驗(yàn)研究[D];太原理工大學(xué);2010年
5 簡(jiǎn)德湘;高能球磨法制備AgSnO_2電接觸材料的研究[D];天津大學(xué);2004年
本文編號(hào):1579380
本文鏈接:http://sikaile.net/jixiegongchenglunwen/1579380.html