基于高頻數(shù)據(jù)的中國股市VaR風(fēng)險研究
發(fā)布時間:2018-06-30 00:44
本文選題:VaR + 高頻波動率。 參考:《重慶大學(xué)》2013年碩士論文
【摘要】:金融市場的風(fēng)險度量一直是學(xué)術(shù)界和風(fēng)險監(jiān)管當(dāng)局關(guān)注的重點。傳統(tǒng)的風(fēng)險度量大多數(shù)都是基于低頻日間數(shù)據(jù)建立的GARCH類模型或SV類模型。雖然這些模型本身能較好的度量時間序列的波動狀況,但股市日內(nèi)交易頻繁,低頻數(shù)據(jù)模型會損失大量的日內(nèi)重要信息。現(xiàn)有研究表明,傳統(tǒng)的GARCH類模型并不能直接用于估計高頻波動率。建立有效的高頻數(shù)據(jù)風(fēng)險度量模型,為金融機(jī)構(gòu)和監(jiān)管當(dāng)局的風(fēng)險監(jiān)控提供一種有效的理論方法參考和政策建議具有重大意義。 本文結(jié)合前人對已實現(xiàn)類高頻波動率的研究,對已實現(xiàn)波動率RV、已實現(xiàn)雙冪次波動率RBV和賦權(quán)已實現(xiàn)雙冪次波動率WRBV進(jìn)行比較,針對WRBV具有的長記憶性,建立了ARFIMA-WRBV-VaR模型對中國股市風(fēng)險進(jìn)行度量,,并與采用低頻日間收益率序列建立的GARCH類模型相比較。 實證結(jié)果表明:ARFIMA-WRBV-VaR模型比EGARCH-VaR模型估計效果更好。而且,已實現(xiàn)類高頻波動率出現(xiàn)了跳躍點、日內(nèi)U型周期性日歷效應(yīng)和長記憶性特征,這些特征受市場微觀結(jié)構(gòu)中的信息不對稱和投資者心理等因素影響。進(jìn)而為風(fēng)險監(jiān)控提出了完善信息披露機(jī)制和增強(qiáng)投資者素質(zhì)的政策建議。
[Abstract]:Financial market risk measurement has been the focus of academic and risk regulatory authorities. Most of the traditional risk measures are GARCH models or SV models based on low frequency day data. Although these models themselves can better measure the volatility of time series, the intraday trading of stock market is frequent, and the low-frequency data model will lose a lot of important information. Existing studies show that the traditional GARCH model can not be directly used to estimate high frequency volatility. It is of great significance to establish an effective risk measurement model of high frequency data and to provide an effective theoretical and methodological reference and policy advice for the risk monitoring of financial institutions and regulatory authorities. In this paper, we compare the realized volatility RV, the realized double power volatility RBV and the weighted double power volatility rate WRBV with the previous researches on the realized high frequency volatility, aiming at the long memory property of WRBV. The ARFIMA-WRBV-VaR model is established to measure the Chinese stock market risk and compared with the GARCH model based on the low-frequency daytime yield series. The empirical results show that the ratio ARFIMA-WRBV-VaR model is more effective than EGARCH-VaR model. Moreover, the realized high frequency volatility shows jumping points, intraday U-type periodic calendar effects and long memory characteristics, which are influenced by the information asymmetry in the market microstructure and investor psychology. Then it puts forward some policy suggestions to improve the information disclosure mechanism and enhance the quality of investors for risk monitoring.
【學(xué)位授予單位】:重慶大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2013
【分類號】:F224;F832.51
【參考文獻(xiàn)】
相關(guān)期刊論文 前8條
1 蘇衛(wèi)東,張世英;多元長記憶SV模型及其在滬深股市的應(yīng)用[J];管理科學(xué)學(xué)報;2004年01期
2 尹優(yōu)平,馬丹;基于分布擬合方法的高頻數(shù)據(jù)風(fēng)險價值研究[J];金融研究;2005年03期
3 邵錫棟;殷煉乾;;基于實現(xiàn)極差和實現(xiàn)波動率的中國金融市場風(fēng)險測度研究[J];金融研究;2008年06期
4 陳守東,王魯非;上證綜合指數(shù)VaR的度量[J];數(shù)量經(jīng)濟(jì)技術(shù)經(jīng)濟(jì)研究;2002年04期
5 邵錫棟;連玉君;黃性芳;;交易間隔、超高頻波動率與VaR——利用日內(nèi)信息預(yù)測金融市場風(fēng)險[J];統(tǒng)計研究;2009年01期
6 蘇濤;詹原瑞;;證券組合SKST-APARCH模型和VaR估計分析[J];系統(tǒng)工程學(xué)報;2005年06期
7 李勝歌;張世英;;“已實現(xiàn)”雙冪次變差與多冪次變差的有效性分析[J];系統(tǒng)工程學(xué)報;2007年03期
8 李勝歌;張世英;;金融波動的賦權(quán)“已實現(xiàn)”雙冪次變差及其應(yīng)用[J];中國管理科學(xué);2007年05期
本文編號:2084099
本文鏈接:http://sikaile.net/jingjilunwen/zbyz/2084099.html
最近更新
教材專著