天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

長(zhǎng)記憶波動(dòng)率的模型研究與實(shí)證分析

發(fā)布時(shí)間:2018-05-03 23:03

  本文選題:長(zhǎng)記憶性 + 高頻數(shù)據(jù) ; 參考:《西北農(nóng)林科技大學(xué)》2013年碩士論文


【摘要】:近半個(gè)世紀(jì)以來(lái),中國(guó)的經(jīng)濟(jì)形式呈現(xiàn)出了前所未有的發(fā)展勢(shì)態(tài),尤其值得關(guān)注的是自2001年中國(guó)正式成為WTO成員國(guó)以來(lái),面對(duì)復(fù)雜多變的世界經(jīng)濟(jì)形勢(shì),中國(guó)的經(jīng)濟(jì)將不可避免的受到來(lái)自外界環(huán)境的各種挑戰(zhàn),而作為經(jīng)濟(jì)發(fā)展命脈的金融市場(chǎng)的發(fā)展已經(jīng)成為經(jīng)濟(jì)領(lǐng)域的研究者和管理者關(guān)注的焦點(diǎn)。在金融領(lǐng)域里關(guān)于各種金融資產(chǎn)價(jià)格波動(dòng)的研究一直是眾多經(jīng)濟(jì)研究者關(guān)注的焦點(diǎn)之一,特別是計(jì)算機(jī)技術(shù)的迅猛發(fā)展,極大地方便了各種金融數(shù)據(jù)的獲取和存儲(chǔ),使得高頻甚至超高頻數(shù)據(jù)的獲取和存儲(chǔ)成為了現(xiàn)實(shí)。經(jīng)典的波動(dòng)率模型主要是以頻率較低的數(shù)據(jù)如日、星期、月為建模研究的對(duì)象,不僅數(shù)據(jù)量小,而且獲取周期比較長(zhǎng),而利用金融高頻數(shù)據(jù)進(jìn)行建模研究,就可以在很短的時(shí)間段內(nèi)獲得大量的數(shù)據(jù),大大的縮短了數(shù)據(jù)的獲取周期,從而也就節(jié)省了大量時(shí)間。和低頻數(shù)據(jù)相比較,高頻數(shù)據(jù)則體現(xiàn)出更加豐富的價(jià)格變動(dòng)過(guò)程中的信息和長(zhǎng)期日間現(xiàn)象的信息,這將大大有利于市場(chǎng)中某些微觀結(jié)構(gòu)理論的研究。所以,與傳統(tǒng)的建立在低頻數(shù)據(jù)基礎(chǔ)上的波動(dòng)率建模研究的不同,本文主要是在上證5間隔的高頻數(shù)據(jù)的基礎(chǔ)上研究波動(dòng)率及其長(zhǎng)記憶性。自從Engle(1951)發(fā)現(xiàn)時(shí)間序列的長(zhǎng)記憶性這一性質(zhì)以來(lái),對(duì)長(zhǎng)記憶這一性質(zhì)的建模和分析正日益受到金融界的廣泛關(guān)注,因?yàn)殚L(zhǎng)記憶性就意味著現(xiàn)在的狀態(tài)將持續(xù)影響將來(lái),這對(duì)于金融風(fēng)險(xiǎn)管理有著不可忽視的作用。本文研究了兩個(gè)非常重要的長(zhǎng)記憶時(shí)間序列模型:分?jǐn)?shù)差分噪聲(FDN)模型和分整自回歸移動(dòng)平均ARFIMA模型,還對(duì)已實(shí)現(xiàn)波動(dòng)率的ARFIMA-RV模型進(jìn)行了研究。 自從已實(shí)現(xiàn)波動(dòng)率被提出后,張世英等學(xué)者對(duì)其進(jìn)行了擴(kuò)展和改進(jìn),得到了賦權(quán)已實(shí)現(xiàn)波動(dòng)率,查閱大量文獻(xiàn)資料,發(fā)現(xiàn)目前對(duì)于賦權(quán)已實(shí)現(xiàn)波動(dòng)率的建模研究鮮有涉及,盡管眾多學(xué)者認(rèn)為ARFIMA模型已經(jīng)能夠很好的預(yù)測(cè)波動(dòng)率,但是如何把賦權(quán)已實(shí)現(xiàn)波動(dòng)率和ARFIMA有效的結(jié)合起來(lái),從而建議一個(gè)符合高頻數(shù)據(jù)自身性質(zhì)同時(shí)也可以用來(lái)估計(jì)市場(chǎng)波動(dòng)率的模型是目前關(guān)于波動(dòng)率建模中一個(gè)比較新的研究方向和難點(diǎn),本文所做的研究就是在這一問(wèn)題背景下展開(kāi)的。通過(guò)實(shí)證分析,得出了賦權(quán)已實(shí)現(xiàn)波動(dòng)率存在長(zhǎng)記憶性,并且對(duì)賦權(quán)已實(shí)現(xiàn)波動(dòng)率取對(duì)數(shù)后,得到的序列表現(xiàn)出了非常明顯的正態(tài)性的特征,,基于此特點(diǎn)和其長(zhǎng)記憶性建立了對(duì)數(shù)賦權(quán)已實(shí)現(xiàn)波動(dòng)率的分整自回歸移動(dòng)平均模型(ARFIMA-ARIMA-lnWRV),通過(guò)參數(shù)估計(jì)確定了模型中各參數(shù)的值,同時(shí)對(duì)結(jié)果進(jìn)行了檢驗(yàn),證實(shí)了模型的良好性,最后介紹了VaR模型的發(fā)展及應(yīng)用,并研究了賦權(quán)已實(shí)現(xiàn)波動(dòng)率在風(fēng)險(xiǎn)價(jià)值度量VaR中的應(yīng)用。
[Abstract]:In the past half century, China's economic form has taken on an unprecedented development, especially since China became a member of the WTO in 2001, facing the complex and changeable world economic situation. China's economy will inevitably be challenged by the external environment, and the development of the financial market, which is the lifeblood of economic development, has become the focus of attention of researchers and managers in the economic field. In the field of finance, the research on the fluctuation of the price of various kinds of financial assets has been one of the focuses of many economic researchers, especially the rapid development of computer technology, which greatly facilitates the acquisition and storage of all kinds of financial data. It makes the acquisition and storage of high frequency and even ultra high frequency data become a reality. The classical volatility model is mainly based on low-frequency data such as day, week and month. It not only has a small amount of data, but also has a long acquisition period. It can obtain a lot of data in a very short period of time, greatly shorten the period of data acquisition, and thus save a lot of time. Compared with the low-frequency data, the high-frequency data reflect more abundant information in the process of price change and the information of long-term daytime phenomenon, which will greatly benefit the study of some microstructural theories in the market. Therefore, unlike the traditional research on volatility modeling based on low frequency data, this paper mainly studies volatility and its long memory on the basis of high frequency data of 5 interval in Shanghai Stock Exchange. Since Engle discovered the property of long memory in time series, the modeling and analysis of long memory has attracted more and more attention in the financial world, because long memory means that the present state will continue to affect the future. This for financial risk management has a role that can not be ignored. In this paper, two very important long memory time series models: fractional differential noise (FDN) model and fractional autoregressive moving average (ARFIMA) model are studied. The ARFIMA-RV model of realized volatility is also studied. Since the realization of volatility has been put forward, Zhang Shiying and other scholars have extended and improved it, obtained weighted realized volatility, consulted a lot of literature, found that the modeling of weighted realized volatility is rarely involved. Although many scholars think that ARFIMA model has been able to predict volatility, but how to effectively combine weighted realized volatility with ARFIMA. Therefore, it is suggested that a model which can also be used to estimate market volatility in accordance with the nature of high frequency data is a relatively new research direction and difficulty in volatility modeling. The research done in this paper is carried out under the background of this problem. Through the empirical analysis, it is concluded that the weighted realized volatility has long memory, and the logarithm of the weighted realized volatility shows the characteristic of normality. Based on this characteristic and its long memory property, an ARFIMA-ARIMA-lnWRVV model of integral autoregressive moving average (ARFIMA-ARIMA-lnWRVV) with logarithmic weighting of realized volatility is established. The values of each parameter in the model are determined by parameter estimation, and the results are verified and the model is proved to be good. Finally, the development and application of VaR model are introduced, and the application of weighted realized volatility in VaR is studied.
【學(xué)位授予單位】:西北農(nóng)林科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2013
【分類號(hào)】:F224;F832.5

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 王文靜;馬軍海;;基于灰色經(jīng)濟(jì)計(jì)量模型的我國(guó)股市波動(dòng)率實(shí)證研究[J];統(tǒng)計(jì)與決策;2009年18期

2 趙偉雄;崔海蓉;何建敏;;GARCH類模型波動(dòng)率預(yù)測(cè)效果評(píng)價(jià)——以滬銅期貨為例[J];西安電子科技大學(xué)學(xué)報(bào)(社會(huì)科學(xué)版);2010年04期

3 崔海蓉;何建敏;;我國(guó)期貨市場(chǎng)成交量和持倉(cāng)量與價(jià)格波動(dòng)關(guān)系研究[J];統(tǒng)計(jì)與決策;2010年06期

4 羅羨華,李元;股票波動(dòng)率的高頻率數(shù)據(jù)估計(jì)及實(shí)證分析[J];廣州大學(xué)學(xué)報(bào)(自然科學(xué)版);2003年04期

5 井百祥;孫伶俐;;認(rèn)股權(quán)證定價(jià)實(shí)證研究[J];河南理工大學(xué)學(xué)報(bào)(社會(huì)科學(xué)版);2006年02期

6 潘紅宇;;匯率風(fēng)險(xiǎn)如何影響中國(guó)對(duì)日本的出口[J];國(guó)際貿(mào)易問(wèn)題;2006年07期

7 陳超;鄒捷中;;基于跳躍波動(dòng)率的未定權(quán)益定價(jià)模型[J];數(shù)學(xué)的實(shí)踐與認(rèn)識(shí);2006年12期

8 包郭平;應(yīng)益榮;;金融市場(chǎng)中高頻數(shù)據(jù)的分析方法[J];五邑大學(xué)學(xué)報(bào)(自然科學(xué)版);2007年01期

9 黃秀海;;滬深股指差額非對(duì)稱的CARCH效應(yīng)分析[J];統(tǒng)計(jì)與信息論壇;2007年04期

10 陳浪南;洪如明;;基于已知信息的波動(dòng)率修正杠桿效應(yīng)研究[J];經(jīng)濟(jì)研究;2007年11期

相關(guān)會(huì)議論文 前10條

1 王一鳴;趙華;;我國(guó)滬深300指數(shù)波動(dòng)率結(jié)構(gòu)突變的檢驗(yàn)[A];數(shù)學(xué)·力學(xué)·物理學(xué)·高新技術(shù)交叉研究進(jìn)展——2010(13)卷[C];2010年

2 梁霞;梁循;;互聯(lián)網(wǎng)金融文本信息關(guān)鍵詞形態(tài)挖掘[A];第六屆全國(guó)信息檢索學(xué)術(shù)會(huì)議論文集[C];2010年

3 吳恒煜;朱福敏;;中國(guó)股票市場(chǎng)資產(chǎn)收益的非對(duì)稱無(wú)窮純跳躍行為研究[A];第六屆(2011)中國(guó)管理學(xué)年會(huì)——金融分會(huì)場(chǎng)論文集[C];2011年

4 應(yīng)益榮;寇博;;平均累積波動(dòng)率對(duì)風(fēng)險(xiǎn)溢價(jià)影響的研究[A];第四屆中國(guó)智能計(jì)算大會(huì)論文集[C];2010年

5 吳鍇;;現(xiàn)金流波動(dòng)、盈利穩(wěn)定性與公司價(jià)值:基于滬深股市的實(shí)證研究[A];第六屆(2011)中國(guó)管理學(xué)年會(huì)——會(huì)計(jì)與財(cái)務(wù)分會(huì)場(chǎng)論文集[C];2011年

6 肖慶憲;;變系數(shù)Black-Scholes模型的統(tǒng)計(jì)推斷[A];發(fā)展的信息技術(shù)對(duì)管理的挑戰(zhàn)——99’管理科學(xué)學(xué)術(shù)會(huì)議專輯(下)[C];1999年

7 宋福鐵;;上市公司股價(jià)收益與股權(quán)收益的風(fēng)險(xiǎn)關(guān)系研究[A];第四屆(2009)中國(guó)管理學(xué)年會(huì)——金融分會(huì)場(chǎng)論文集[C];2009年

8 徐鈞;;股權(quán)分置制度變革:基于維納隨機(jī)過(guò)程理論的分析[A];中國(guó)制度經(jīng)濟(jì)學(xué)年會(huì)論文集[C];2006年

9 王超;李楠;李欣麗;梁循;;文本傾向性分析用于金融市場(chǎng)波動(dòng)率與金融信息相互關(guān)系的研究[A];第四屆全國(guó)學(xué)生計(jì)算語(yǔ)言學(xué)研討會(huì)會(huì)議論文集[C];2008年

10 劉淳;朱世武;何濟(jì)舟;;金融市場(chǎng)波動(dòng)擇時(shí)策略的經(jīng)濟(jì)價(jià)值分析[A];經(jīng)濟(jì)全球化與系統(tǒng)工程——中國(guó)系統(tǒng)工程學(xué)會(huì)第16屆學(xué)術(shù)年會(huì)論文集[C];2010年

相關(guān)重要報(bào)紙文章 前10條

1 深100指數(shù)基金經(jīng)理林飛;指數(shù)的波動(dòng)[N];證券時(shí)報(bào);2006年

2 Neil O Hara 長(zhǎng)江期貨 鐘哨鋒/編譯;統(tǒng)計(jì)套利交易者:波動(dòng)率商人[N];期貨日?qǐng)?bào);2009年

3 龔小磊;建信優(yōu)選成長(zhǎng)不參與“差公司好股票”游戲[N];中國(guó)證券報(bào);2007年

4 東東;人民幣走勢(shì)打下“美元減息”印記?[N];上海證券報(bào);2007年

5 戴德舜;海富通基金研究總監(jiān)戴德舜: 影響投資的七大猜想[N];第一財(cái)經(jīng)日?qǐng)?bào);2010年

6 興業(yè)證券 蔡艷菲邋陳th;套期保值前 注意現(xiàn)貨資產(chǎn)結(jié)構(gòu)[N];期貨日?qǐng)?bào);2008年

7 華泰長(zhǎng)城期貨 高

本文編號(hào):1840463


資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/jingjilunwen/zbyz/1840463.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶956a2***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com