中國房地產行業(yè)上市公司財務危機預警實證研究
本文選題:房地產上市公司 切入點:財務危機預警 出處:《東北財經大學》2013年碩士論文 論文類型:學位論文
【摘要】:房地產業(yè)是國民經濟的支柱產業(yè),房地產上市公司的財務健康與否直接影響到市場各利益主體,影響到整個國民經濟和社會的發(fā)展。由于房地產行業(yè)是典型的資金密集行業(yè),具有投資大、周期長、風險高、收益高、供應鏈長、地域性強的特點,而近年來國家多番宏觀調控政策對房地產行業(yè)的發(fā)展產生了巨大影響,房地產企業(yè)的財務風險隱患已有所暴露,國內的房地產企業(yè)要想生存發(fā)展,財務風險的解決勢在必行。因此建立一個適合我國房地產企業(yè)的財務危機預警模型,對企業(yè)的財務和運營情況進行預測,具有現(xiàn)實意義。 本文的研究首先是基于對國內外財務危機預警資料和文獻的廣泛閱讀和整理,然后考慮了房地產行業(yè)基本特征,分析了企業(yè)陷入財務危機的相關因素,并從這些因素著手,選取相關的研究變量,在對這些研究變量進行統(tǒng)計分析的基礎上來建立模型,從而構建適合我國的房地產上市公司的財務危機預警模型。研究的內容具體包括以下五部分: 第一部分,緒論。主要說明了對房地產上市公司進行財務預警研究的現(xiàn)實背景以及理論背景,闡述本文研究意義,提出文章的研究框架和具體內容、研究方法和創(chuàng)新點。 第二部分,研究綜述。主要對財務危機和財務預警的內涵進行了界定,對國內外學者在財務危機預警領域的研究成果進行了回顧與評析,從而為本文的研究建立了理論基礎。同時特別闡述了我國近幾年在房地產財務危機預警方面的研究現(xiàn)狀,分析了財務預警理論的發(fā)展趨勢。 第三部分,我國房地產行業(yè)財務危機分析。結合我國房地產行業(yè)的現(xiàn)狀和發(fā)展特點,闡述我國的房地產公司所面臨的財務風險,分析了影響房地產行業(yè)發(fā)展的宏觀和微觀因素。 第四部分,實證研究。系統(tǒng)的解釋本研究所需要采用的方法,說明了研究樣本的選取和剔除過程和數(shù)據來源,預警指標的設計,并應用SPSS19.0統(tǒng)計軟件對數(shù)據指標進行了篩選:先進行K-S正態(tài)性分布檢驗,對符合正態(tài)性分布的指標又實施了獨立樣本T檢驗,而對不符合正態(tài)性分布的指標數(shù)據進行了非參數(shù)檢驗,之后對篩選出來的顯著指標進行了因子分析,提取了主成分。本文的主要創(chuàng)新點在于在因子分析的基礎上,構建了基于2009、2010、2011三年加權平均數(shù)據的Logistic模型(M1),試錯性的將臨界值由傳統(tǒng)的0.5調整為0.38,對模型的擬合度進行了檢驗,并用2012年的數(shù)據進行回帶以檢驗模型的預測效果。為了進行對比,本文還建立了僅基于2009年數(shù)據基礎上的Logistic模型(M2),對兩個模型M1和M2進行了對比分析。 第五部分,研究結論與展望?偨Y本文的實證研究成果和不足,對未來的研究進行了展望,并對房地產業(yè)財務危機預警提出相關建議。 實證研究結果表明:與僅以2009年數(shù)據為基礎建立的模型(M2)相比,以2009、2010、2011三年加權平均數(shù)據所建立的模型(M1)擬合度和預測效果更高,M1模型預測準確率高達98.1%,同時,用2012年的回帶數(shù)據檢驗顯示的準確率達到了76.19%,因此我們最終選擇M1模型作為本文研究的對象。M1模型主要由因子3(盈利能力、公司規(guī)模、托賓Q)和因子4(盈利能力)解釋,可以看出對房地產業(yè)財務危機影響最大的是盈利能力,盈利能力越強,發(fā)生財務危機的可能性越小,呈負相關。與此類似,可以得出公司的資產規(guī)模和市場價值與發(fā)生財務危機的可能性負相關。
[Abstract]:The real estate industry is the pillar industry of the national economy, the real estate listed company's financial health or not directly affect the market stakeholders and influence on the national economy and social development. Because of the real estate industry is a typical capital intensive industry, with large investment, long cycle, high risk, high income, long supply chain strong regional characteristics, and has a great impact in recent years national macro-control policies on the real estate industry development, the exposure of financial risks for real estate enterprises, the domestic real estate enterprises to survive and develop, it is imperative to solve the financial risk. Therefore the establishment of a suitable for China's real estate enterprises the financial crisis early-warning model to predict the financial and business operations, is of practical significance.
This study is the first extensive reading of domestic and international financial crisis early warning information and literature and consolidation based on, then we consider the basic characteristics of the real estate industry, analyzes the factors of enterprise financial crisis, and proceed from these factors, the selection of research variables related to these research variables, on the basis of statistical analysis of building up the model, in order to build the early warning model of financial crisis for China's real estate listed companies. The research content includes the following five parts:
The first part is the introduction. It mainly describes the realistic background and theoretical background of the financial early-warning research for real estate listed companies, expounds the significance of this research, and puts forward the research framework and specific contents, research methods and innovation points of the article.
The second part of the review, the main connotation. The financial crisis and financial early-warning are defined, the domestic and foreign scholars in the field of financial crisis early-warning research conducted a review and analysis, so as to establish a theoretical foundation for this research. At the same time especially elaborated our country in recent years in the real estate financial crisis early warning of the study on the current situation, analyzes the development trend of the financial early-warning theory.
The third part, the financial crisis analysis of China's real estate industry. Combined with the current situation and development characteristics of China's real estate industry, this paper expounds the financial risks faced by China's Real Estate Company, and analyzes the macro and micro factors that affect the development of the real estate industry.
The fourth part is the research and empirical research. Systematic explanation methods used in this study to illustrate the study sample selection and elimination process and the source of the data, the design of early warning indicators, and indicators of data were screened using the SPSS19.0 statistical software: K-S advanced distribution normality test, in accord with normal distribution index and the implementation of the independent sample T test, and do not conform to the normal distribution of the index data of the non parametric test, after the significant indicators screened by factor analysis, principal component extraction. The main innovations in based on the factor analysis, constructing the Logistic model 200920102011 three years weighted based on the data of average (M1), the critical value of trial and error adjustment from 0.5 traditional is 0.38, the fitting degree of the model is tested, and brought back to test the model's predictions for the 2012 data In order to compare, the Logistic model (M2) based on the data of 2009 is also established, and the two models, M1 and M2, are compared and analyzed.
The fifth part, the research conclusions and prospects, summarizes the empirical research results and shortcomings of this paper, forecasts the future research, and puts forward some suggestions for the early warning of real estate financial crisis.
The empirical results show that: only based on 2009 data model (M2) compared to 200920102011 in three years, the weighted average of the established data model (M1) prediction effect and higher fitting degree, M1 model prediction accuracy rate of up to 98.1%, at the same time, with the 2012 back accuracy with data display test up to 76.19%, so we chose the M1 model as the object of the.M1 model in this paper is mainly composed of 3 factors (profitability, company size, Tobin Q) and factor 4 (profitability), we can see that the maximum of the financial crisis the real estate industry affect the profitability, stronger profitability, possibility of financial the crisis is small, negative correlation. Similarly, it can be the company's asset size and market value and the possibility of financial crisis is negative.
【學位授予單位】:東北財經大學
【學位級別】:碩士
【學位授予年份】:2013
【分類號】:F299.233.4;F275
【相似文獻】
相關期刊論文 前10條
1 王冬梅;;財務危機預警模型研究綜述[J];市場論壇;2009年05期
2 王滿;李坤榕;;上市公司財務危機預警的實證分析[J];中國總會計師;2010年01期
3 王媛媛;邢慶嬌;;國內外財務危機預警研究綜述[J];現(xiàn)代商貿工業(yè);2010年20期
4 王碩非;;從現(xiàn)金增量指標探究財務危機預警問題[J];商業(yè)文化(上半月);2011年09期
5 蔣太才;伍晶晶;盧宇;;國內外財務危機預警研究綜述[J];企業(yè)導報;2011年21期
6 盧瑞瓊;李淑錦;;財務危機預警分析的Z計分模型應用研究[J];魅力中國;2010年12期
7 吳少平,李小燕;談財務危機預警分析指標的確定標準[J];金融科學;2000年01期
8 車曉娜,李立春;財務危機預警模式[J];上海會計;2001年11期
9 仝玲;企業(yè)財務危機預警概念辯析[J];統(tǒng)計與決策;2002年10期
10 唐有瑜;財務危機預警模型及其在信貸風險管理中的應用[J];金融論壇;2002年01期
相關會議論文 前9條
1 王澤霞;黎良燕;;基于主營視角的財務危機預警模型構建研究——來自我國制造業(yè)上市公司的經驗證據[A];中國會計學會高等工科院校分會2009年學術會議(第十六屆學術年會)論文集[C];2009年
2 陳娟;孟琳;;財務危機預警模型——Z計分模型的應用分析[A];中國會計學會2013年學術年會論文集[C];2013年
3 楊淑娥;;企業(yè)財務危機預警的經濟動因與循環(huán)機理剖析[A];中國會計學會第四屆全國會計信息化年會論文集(上)[C];2005年
4 王滿;李坤榕;;遼寧省上市公司財務危機預警的實證分析——基于Z值評分模型的研究[A];2008年度中國總會計師優(yōu)秀論文選[C];2009年
5 徐光華;沈弋;;企業(yè)內部控制與財務危機預警耦合研究——一個基于契約理論的分析框架[A];中國會計學會2011學術年會論文集[C];2011年
6 賈煒瑩;申貴成;;基于主成分支持向量機的財務危機預警研究[A];中國會計學會2013年學術年會論文集[C];2013年
7 駱s,
本文編號:1648221
本文鏈接:http://sikaile.net/jingjilunwen/zbyz/1648221.html