基于RS-LS-SVM的股票市場預測模型研究
[Abstract]:As a common data mining method, support vector machine (SVM) has many advantages compared with other methods, and it is widely used in various fields. However, there are still many problems worth studying in practical application, and the model itself can be improved. In order to further improve the support vector machine (SVM) model and generalize it, this paper selects the capital market which has some problems in the application of support vector machine (SVM). Based on the analysis of the current stock market forecasting methods and the defects of the standard support vector machine (SVM), a rough set least squares support vector machine (LS-SVM) model is proposed to predict the stock market. First, the rough set is used to reduce the attribute of the prediction index, and then the least square support vector machine is used to predict the fluctuation of stock price in the index system of the reduction, so as to provide a certain reference for the stock market forecast. It also provides ideas and methods for the application of rough set and least squares support vector machine. The main contents of this paper are as follows: firstly, this paper systematically introduces the research status of stock market prediction, support vector machine, least square support vector machine and rough set, and summarizes the shortcomings of existing methods on the basis of previous studies. In view of the shortcomings of the existing methods, the RS-LS-LSVM stock market forecasting method is put forward. Secondly, the basic theory of rough set and least squares support vector machine (LS-SVM) and the selection of kernel function in the model are explained. Then, according to the overall idea of the model, the flow chart of the model is established, the processing process of the prediction model is described in detail, and a set of prices including the highest price today, the highest price yesterday, the highest price the day before yesterday, The prediction index system is composed of 27 indexes including the highest price of 7 days, and the processing process and method of each step in the model are explained one by one. Finally, in the main board, the small and medium-sized board, and the gem, the transaction data of PetroChina (601857), Huilong shares (002556) and Jinsheng Precision (300083) for the whole year 2016 were randomly selected as the research samples. Each sample was 244sets of data. The contrast experiments of three groups of models were carried out in MATLAB software, and 20 random experiments were carried out each time. In the software, RS-LS-SVM,LS-SVM and RS-SVM were used to predict the sample data respectively. The results are compared. The experimental results show that: first, three different reduction index systems are obtained for the three samples, which shows that the same index is different for different prediction objects; There are differences in the application of the same indicators to different prediction objects. Therefore, it is very necessary to carry out index selection and attribute reduction before prediction. Attribute reduction can reduce data redundancy and improve prediction performance, and the primary index system proposed in this paper can predict the stock market in China to a certain extent. Second, the experimental results verify the feasibility and validity of the RS-LS-SVM prediction model. The results of many experiments on the main board, the small and medium-sized board and the growth enterprise board show that the RS-LS-SVM prediction model is better than the LS-SVM and RS-SVM model in the data of MSE and RMSE. It can be seen that introducing rough set and least squares support vector machine into stock market simplifies the difficulty of the model and improves the speed of solution. It has reference value for the research of stock market forecasting model and investors' investment decision.
【學位授予單位】:成都理工大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:F832.51
【參考文獻】
相關期刊論文 前10條
1 蔡歡;;基于遺傳算法和LS-SVM的財務危機預測[J];統(tǒng)計與決策;2017年02期
2 王衛(wèi)紅;卓鵬宇;;基于PCA-FOA-SVR的股票價格預測研究[J];浙江工業(yè)大學學報;2016年04期
3 彭燦;李群善;劉浩忠;;高海拔地區(qū)隧道總造價預測——基于粗糙集-支持向量機模型[J];黑龍江交通科技;2016年08期
4 李奮華;趙潤林;;一種基于時間序列分析的股票走勢預測模型[J];現(xiàn)代計算機(專業(yè)版);2016年20期
5 張清華;胡榮德;姚龍洋;謝萬成;;基于屬性重要度的風險決策粗糙集屬性約簡[J];控制與決策;2016年07期
6 梁挺;孫金金;;技術投資方法在股票實戰(zhàn)中的應用分析[J];商業(yè)經(jīng)濟;2016年04期
7 黃詩蘊;;基于支持向量機的上市公司投資回報預測[J];環(huán)球市場信息導報;2015年47期
8 唐衛(wèi)國;張濤;羅奕;徐晉勇;;粗糙集屬性約簡算法綜述[J];大眾科技;2015年11期
9 陳優(yōu)闊;楊永國;張鑫;張輝;;基于粗糙集及最小二乘支持向量機的煤層厚度預測[J];地球物理學進展;2015年05期
10 李曼;;股票價格的影響因素分析[J];中國集體經(jīng)濟;2015年25期
相關博士學位論文 前3條
1 郭新辰;最小二乘支持向量機算法及應用研究[D];吉林大學;2008年
2 周觀君;基于量價分析的中國股票市場價格行為研究[D];首都經(jīng)濟貿(mào)易大學;2005年
3 崔廣才;基于粗糙集的數(shù)據(jù)挖掘方法研究[D];吉林大學;2004年
相關碩士學位論文 前10條
1 陳綿旺;基于RS-SVM的商品住宅價格預測研究[D];華東交通大學;2016年
2 韓莉;基于LM-BP神經(jīng)網(wǎng)絡股票預測研究[D];東北農(nóng)業(yè)大學;2016年
3 金津輝;粗糙集屬性約簡研究[D];安徽工業(yè)大學;2016年
4 朱磊;基于支持向量機的股價預測研究[D];重慶工商大學;2016年
5 孫瑞奇;基于LSTM神經(jīng)網(wǎng)絡的美股股指價格趨勢預測模型的研究[D];首都經(jīng)濟貿(mào)易大學;2016年
6 史媛慧;基于粗糙集的股價趨勢預測研究[D];河北科技大學;2015年
7 王瓊瑤;基于改進的支持向量機技術在股票短期價格預測中的應用[D];重慶交通大學;2015年
8 陳安輝;基于GA-ANFIS的股指預測研究[D];哈爾濱工業(yè)大學;2015年
9 范濤;基于優(yōu)化算法的股票預測研究[D];湖北工業(yè)大學;2015年
10 萬岑;基于支持向量機的中國股票價格研究[D];山東師范大學;2015年
,本文編號:2395095
本文鏈接:http://sikaile.net/jingjilunwen/jinrongzhengquanlunwen/2395095.html