天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 經(jīng)濟(jì)論文 > 股票論文 >

數(shù)據(jù)挖掘技術(shù)在地方政府債務(wù)風(fēng)險(xiǎn)研究中的應(yīng)用

發(fā)布時(shí)間:2018-04-16 21:05

  本文選題:地方政府 + 債務(wù)風(fēng)險(xiǎn); 參考:《現(xiàn)代電子技術(shù)》2017年11期


【摘要】:為了科學(xué)、合理地對地方政府債務(wù)風(fēng)險(xiǎn)進(jìn)行評價(jià),提出基于數(shù)據(jù)挖掘技術(shù)的地方政府債務(wù)風(fēng)險(xiǎn)評價(jià)模型。首先建立地方政府債務(wù)風(fēng)險(xiǎn)評價(jià)的指標(biāo)體系,采用灰色關(guān)聯(lián)分析方法確定地方政府債務(wù)風(fēng)險(xiǎn)指標(biāo)的關(guān)聯(lián)系數(shù);然后利用數(shù)據(jù)挖掘技術(shù)——神經(jīng)網(wǎng)絡(luò)自動處理數(shù)據(jù)的優(yōu)點(diǎn),建立地方政府債務(wù)風(fēng)險(xiǎn)評價(jià)模型;最后通過實(shí)證分析驗(yàn)證模型的可信度。實(shí)證結(jié)果表明,與參比地方政府債務(wù)風(fēng)險(xiǎn)評估模型相比,該模型提高了地方政府債務(wù)風(fēng)險(xiǎn)評價(jià)的準(zhǔn)確性,加快了地方政府債務(wù)風(fēng)險(xiǎn)評價(jià)的速度,可以有效降低地方政府債務(wù)風(fēng)險(xiǎn),具有一定的推薦價(jià)值。
[Abstract]:In order to evaluate the local government debt risk scientifically and reasonably, a local government debt risk assessment model based on data mining technology is proposed.Firstly, the index system of local government debt risk assessment is established, and the correlation coefficient of local government debt risk index is determined by grey relational analysis, and then the advantage of data mining technology-neural network is used to automatically process the data.The risk assessment model of local government debt is established, and the credibility of the model is verified by empirical analysis.The empirical results show that compared with the reference local government debt risk assessment model, the model improves the accuracy of local government debt risk assessment and accelerates the speed of local government debt risk assessment.Can reduce the local government debt risk effectively, has certain recommendation value.
【作者單位】: 葫蘆島市委黨校;
【分類號】:F812.5;TP311.13
,

本文編號:1760553

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/jingjilunwen/jinrongzhengquanlunwen/1760553.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶b76c4***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請E-mail郵箱bigeng88@qq.com