已實(shí)現(xiàn)NGARCH模型及應(yīng)用研究
本文選題:高頻金融數(shù)據(jù) 切入點(diǎn):波動(dòng)率 出處:《重慶理工大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:近年來(lái),隨著電子化交易在金融市場(chǎng)的廣泛應(yīng)用以及信息技術(shù)的迅猛發(fā)展,金融市場(chǎng)的波動(dòng)性也日趨激烈。如何更精確地預(yù)測(cè)資產(chǎn)的收益風(fēng)險(xiǎn)引起了人們的高度重視。估計(jì)資產(chǎn)收益的波動(dòng)率是預(yù)測(cè)收益風(fēng)險(xiǎn)的關(guān)鍵問題之一,而波動(dòng)率的估計(jì)精度又與模型的假設(shè)及數(shù)據(jù)的采集頻率密切相關(guān)。一般而言,模型的波動(dòng)率估計(jì)值越精確以及所使用的數(shù)據(jù)頻率越高,波動(dòng)率的估計(jì)精度就越好。因此,以高頻金融數(shù)據(jù)為研究對(duì)象,如何建立一個(gè)具有統(tǒng)計(jì)優(yōu)良性的波動(dòng)率模型是本文的主要研究目標(biāo)。本文的主要研究?jī)?nèi)容及創(chuàng)新點(diǎn)如下:1.基于NGARCH模型刻畫了波動(dòng)率的杠桿效應(yīng)特征,本文在已實(shí)現(xiàn)GARCH模型的波動(dòng)率方程中引入?yún)?shù)的擾動(dòng),提出了已實(shí)現(xiàn)NGARCH模型。在新模型中,引入的參數(shù)與誤差項(xiàng)序列成負(fù)相關(guān)關(guān)系,使得新息既在大小上對(duì)當(dāng)前收益作出擾動(dòng),又在方向上對(duì)當(dāng)前收益作出擾動(dòng)。2.鑒于模型的參數(shù)估計(jì)精度直接影響風(fēng)險(xiǎn)預(yù)測(cè)的準(zhǔn)確性,本文采用蒙特卡羅方法對(duì)提出的已實(shí)現(xiàn)NGARCH模型的參數(shù)估計(jì)的穩(wěn)健性進(jìn)行檢驗(yàn)。隨機(jī)模擬結(jié)果顯示,在%5的顯著性水平下,所有參數(shù)估計(jì)值的均方誤差均顯著。同時(shí),當(dāng)設(shè)定模擬次數(shù)為500次時(shí),隨著樣本量的增大,所有參數(shù)的估計(jì)值依然顯著。模擬結(jié)果表明,本文提出的已實(shí)現(xiàn)NGARCH模型的波動(dòng)率估計(jì)方法有較好的穩(wěn)健性。3.基于文中提出的已實(shí)現(xiàn)NGARCH模型對(duì)上證50指數(shù)和上證380指數(shù)5min頻率的高頻數(shù)據(jù)進(jìn)行了實(shí)證分析,并對(duì)其風(fēng)險(xiǎn)預(yù)測(cè)結(jié)果進(jìn)行了比率檢驗(yàn)。其次,對(duì)已實(shí)現(xiàn)NGARCH模型和已實(shí)現(xiàn)GARCH模型的風(fēng)險(xiǎn)預(yù)測(cè)結(jié)果進(jìn)行了比較,結(jié)果表明,已實(shí)現(xiàn)GARCH模型比已實(shí)現(xiàn)NGARCH模型高估了市場(chǎng)風(fēng)險(xiǎn)。本文提出的已實(shí)現(xiàn)NGARCH模型,為金融風(fēng)險(xiǎn)管理提供了新的方法,在一定程度上豐富了金融風(fēng)險(xiǎn)管理的理論。
[Abstract]:In recent years, with the wide application of electronic transactions in financial markets and the rapid development of information technology, The volatility of financial markets is becoming more and more intense. How to predict the return risk of assets more accurately has attracted great attention. Estimating the volatility of asset returns is one of the key problems in predicting income risk. The accuracy of volatility estimation is closely related to the assumptions of the model and the frequency of data collection. In general, the more accurate the volatility estimate is and the higher the frequency of the data used, the better the accuracy of volatility estimation. Taking high-frequency financial data as the research object, How to establish a volatility model with statistical excellence is the main research objective of this paper. The main contents and innovations of this paper are as follows: 1. Based on the NGARCH model, the characteristics of volatility leverage are described. In this paper, the parameter perturbation is introduced into the volatility equation of the realized GARCH model, and the realized NGARCH model is proposed. In the new model, the introduced parameters have a negative correlation with the series of error terms, which makes the innovation not only disturb the current income in the magnitude, but also the new model. In view of the fact that the accuracy of parameter estimation of the model directly affects the accuracy of risk prediction, In this paper, Monte-Carlo method is used to test the robustness of the proposed parameter estimation of NGARCH model. The results of random simulation show that the mean square error of all parameter estimates is significant at the significant level of 5. At the same time, When the number of simulations is set to 500 times, with the increase of sample size, the estimated values of all parameters are still significant. The simulation results show that, The volatility estimation method of realized NGARCH model proposed in this paper has good robustness. 3. Based on the realized NGARCH model proposed in this paper, the high frequency data of Shanghai 50 index and Shanghai 380 index 5min frequency are empirically analyzed. The results of risk prediction are compared between the realized NGARCH model and the realized GARCH model, and the results show that, The realized GARCH model overestimates the market risk compared with the realized NGARCH model. The realized NGARCH model proposed in this paper provides a new method for financial risk management and enriches the theory of financial risk management to a certain extent.
【學(xué)位授予單位】:重慶理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:F224;F832.51
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 黃友珀;唐振鵬;周熙雯;;基于偏t分布realized GARCH模型的尾部風(fēng)險(xiǎn)估計(jì)[J];系統(tǒng)工程理論與實(shí)踐;2015年09期
2 王玲;;Realized GARCH模型在黃金期貨市場(chǎng)的應(yīng)用[J];財(cái)務(wù)與金融;2015年03期
3 黃金山;陳敏;;基于高頻數(shù)據(jù)的GARCH模型的偽極大指數(shù)似然估計(jì)[J];應(yīng)用數(shù)學(xué)學(xué)報(bào);2014年06期
4 劉威儀;;市場(chǎng)微觀結(jié)構(gòu)噪聲的形成機(jī)制研究[J];金融理論與實(shí)踐;2014年07期
5 袁周波;;基于R-GARCH模型與HAR模型預(yù)測(cè)能力比較研究[J];時(shí)代金融;2012年30期
6 葉緒國(guó);杜雪樵;;高頻金融數(shù)據(jù)中市場(chǎng)微觀結(jié)構(gòu)噪音誤差估計(jì)[J];大學(xué)數(shù)學(xué);2012年05期
7 唐勇;寇貴明;;股票市場(chǎng)微觀結(jié)構(gòu)噪聲、跳躍、流動(dòng)性關(guān)系分析[J];中國(guó)管理科學(xué);2012年02期
8 李勝歌;張世英;;金融高頻數(shù)據(jù)的最優(yōu)抽樣頻率研究[J];管理學(xué)報(bào);2008年06期
9 張偉;李平;曾勇;;中國(guó)股票市場(chǎng)個(gè)股已實(shí)現(xiàn)波動(dòng)率估計(jì)[J];管理學(xué)報(bào);2008年02期
10 段琳琳;屠新曙;;已實(shí)現(xiàn)波動(dòng)率在我國(guó)金融市場(chǎng)的應(yīng)用前景[J];統(tǒng)計(jì)與決策;2005年24期
相關(guān)博士學(xué)位論文 前1條
1 黃金山;基于高頻數(shù)據(jù)的GARCH模型的參數(shù)估計(jì)[D];中國(guó)科學(xué)技術(shù)大學(xué);2013年
,本文編號(hào):1597360
本文鏈接:http://sikaile.net/jingjilunwen/jinrongzhengquanlunwen/1597360.html