基于小波去噪的我國股市分形分析
發(fā)布時間:2018-03-09 02:38
本文選題:分形市場理論 切入點:股市噪聲 出處:《蘭州商學院》2014年碩士論文 論文類型:學位論文
【摘要】:本文在分形理論和噪聲理論的基礎上,選取對我國股市具有代表性的上證綜合指數(shù),以股市重大事件為分界點,將2000-2013年劃分為4個階段,分析股權(quán)分置改革前后、金融危機期間和金融危機后噪聲大小和分形度量,在此基礎上,運用小波去噪對不同時期的收益率進行去噪,分析去噪前后噪聲的變化及分形度量的變化,并用去噪后的股指價格序列進行預測,得到以下結(jié)論: 1.本文認為證券市場重大事件、投資者的非理性行為和信息不對稱是造成股市噪聲主要原因,運用方差比檢驗、Hurst指數(shù)和非對稱性模型對不同時期的噪聲大小作出一定的檢驗,發(fā)現(xiàn)我國股市是的分形市場,而且噪聲較大,不同時期噪聲大小明顯不同,金融危機期間最大,股改前和危機后居中,股改后最小。 2.采用db2和coif小波函數(shù)對不同時期收益率進行2-4層的小波去噪,發(fā)現(xiàn)db2小波4層分解去噪效果最好;分析了db2小波去噪前后收益率分形度量和噪聲比較,我們發(fā)現(xiàn),去噪后R/S和ARFIMA計算的Hurst變大,而且更加顯著,,這使得分形序列的長記憶性增強,具有較好可預測性。 3.利用2010-2013年經(jīng)db2-4去噪后的股指收盤價進行EGARCH(2,2)建模并對40期價格進行預測,發(fā)現(xiàn)模型能較好的擬合價格走勢,短期內(nèi)有較好的預測效果。
[Abstract]:On the basis of fractal theory and noise theory, this paper selects the Shanghai Composite Index, which is representative of China's stock market, and divides the period of 2000-2013 into four stages, taking the major events of the stock market as the dividing point, and analyzes before and after the reform of the split share structure. On the basis of noise magnitude and fractal measurement during and after financial crisis, wavelet denoising is used to Denoise the rate of return in different periods, and the changes of noise and fractal measurement before and after denoising are analyzed. Using the de-noised stock index price sequence to predict, the following conclusions are obtained:. 1. This paper holds that the major events in the stock market, the irrational behavior of investors and the asymmetry of information are the main causes of stock market noise. The Hurst exponent and asymmetry model are used to test the noise in different periods. It is found that China's stock market is a fractal market, and the noise is large, the noise is obviously different in different periods, the biggest is during the financial crisis, the middle is before and after the stock reform, and the smallest is after the stock reform. 2. Using db2 and coif wavelet function to do 2-4 wavelet denoising in different periods, it is found that db2 wavelet decomposition has the best effect on denoising. After analyzing the fractal measure of yield and noise comparison before and after db2 wavelet denoising, we find that, After denoising, the Hurst calculated by R / S and ARFIMA becomes larger and more significant, which enhances the long memory of fractal sequence and has good predictability. 3.Using the stock index closing price after db2-4 de-noising from 2010-2013 to carry out EGARCH2 / 2) modeling and forecasting the 40-period price, it is found that the model can fit the price trend well and has a better forecast effect in the short term.
【學位授予單位】:蘭州商學院
【學位級別】:碩士
【學位授予年份】:2014
【分類號】:F832.51;F224
【參考文獻】
相關(guān)期刊論文 前10條
1 陳其安;張媛;賴琴云;陳亮;;中國股票市場“異常現(xiàn)象”及其產(chǎn)生原因——基于噪音交易分析[J];重慶大學學報(社會科學版);2009年06期
2 章輝;胡穎;駱媛媛;邵彬;;滬深300股指期貨的保證金設計——基于“分形市場”假說的研究[J];財貿(mào)經(jīng)濟;2008年04期
3 陶珂;朱建軍;;小波去噪質(zhì)量評價方法的對比研究[J];大地測量與地球動力學;2012年02期
4 張維,黃興;滬深股市的R/S實證分析[J];系統(tǒng)工程;2001年01期
5 肖燕君;張華;任若恩;;基于小波多尺度分析的股票價格組合預測方法[J];工業(yè)工程;2011年06期
6 王蘇生;李為;;股改前后中國股市噪聲比較分析[J];廣東金融學院學報;2010年01期
7 李慶;趙新泉;;基于分形市場理論的開放式基金風險分析[J];金融理論與實踐;2010年12期
8 王軼君;;中國證券市場制度變革對其分形特征的影響研究[J];江西社會科學;2010年11期
9 王東;;全球股市的風險與不確定性[J];科學決策;2008年04期
10 孔東民;;中國股市噪音成分及影響因素檢驗[J];南方經(jīng)濟;2007年01期
本文編號:1586660
本文鏈接:http://sikaile.net/jingjilunwen/jinrongzhengquanlunwen/1586660.html
教材專著