考慮GARCH效應的動態(tài)無套利Nelson-Siegel模型及國債管理策略分析
本文關鍵詞:考慮GARCH效應的動態(tài)無套利Nelson-Siegel模型及國債管理策略分析 出處:《廈門大學》2014年碩士論文 論文類型:學位論文
更多相關文章: 利率期限結構 GARCH效應 動態(tài)無套利NS模型
【摘要】:利率期限結構不僅是一國宏觀經(jīng)濟運行中的一個重要指標,在金融市場中影響各類金融產(chǎn)品的定價,在微觀層面調節(jié)投融資決策,在世界經(jīng)濟中基于購買力平價對各國之間匯率變化起到基準調節(jié)作用。黨的十八屆三中全會決議更是明確提出“加快推進利率市場化,健全反映市場供求關系的國債收益率曲線”,并將其納入國家核心發(fā)展戰(zhàn)略。因此,學術界和實務界一直以來都在尋找能夠更好地擬合和預測利率演化過程的期限結構模型。 本文在廣泛使用的傳統(tǒng)Nelson-Siegel模型和具有堅實經(jīng)濟基礎的無套利Nelson-Siegel基礎上,考慮不同時點、不同期限可能出現(xiàn)的條件異方差因素,得到考慮GARCH的動態(tài)無套利Nelson-Siegel模型。 G-AFNS模型仍舊采用NS族模型的水平因子、斜率因子和曲率因子作為三個狀態(tài)變量,在對2005年1月至2012年11月中國交易所國債市場上的利率期限結構進行研究之后,發(fā)現(xiàn)G-AFNS模型樣本內擬合程度較高,在進行利率預測時,預測能力明顯優(yōu)于傳統(tǒng)的DNS模型和無套利AFNS模型,說明考慮條件異方差之后預測能力顯著提高,G-AFNS模型適合應用于我國國債市場上。 接下來在國債管理策略分析方面,主要側重債券免疫組合的構造,與DNS向量久期一致,通過水平因子久期、斜率因子久期和曲率因子久期的完全匹配,來消除利率期限結構變化給債券組合價值帶來的利率風險敝口。本文分別考察了每隔1個月、2個月和3個月進行免疫組合調整,結果認為在中國交易所國債市場上,如果利率期限結構不出現(xiàn)突變,每2個月進行一次組合調整來保證免疫效果,應該是較為科學合理的頻率。
[Abstract]:Term structure of interest rate is not only an important index in the macroeconomic operation of a country, but also influences the pricing of all kinds of financial products in the financial market and adjusts the investment and financing decisions at the micro level. In the world economy, based on purchasing power parity, the exchange rate changes between countries play a benchmark role. The resolution of the third Plenary session of the 18 CPC Central Committee specifically proposed "accelerating the promotion of interest rate marketization." Improve the bond yield curve that reflects the relationship between supply and demand in the market "and incorporate it into the national core development strategy. The academic and practical circles have been looking for a term structure model which can better fit and predict the evolution of interest rate. In this paper, based on the widely used traditional Nelson-Siegel model and the non-arbitrage Nelson-Siegel with solid economic foundation, different points are considered. Considering the conditional heteroscedasticity factors of different periods, a dynamic arbitrage free Nelson-Siegel model considering GARCH is obtained. G-AFNS model still uses the horizontal factor, slope factor and curvature factor of NS family model as three state variables. After studying the term structure of interest rate in the treasury bond market of China Stock Exchange from January 2005 to November 2012, it is found that the G-AFNS model has a higher fitting degree in the sample. In the forecasting of interest rate, the forecasting ability is obviously superior to the traditional DNS model and the AFNS model without arbitrage, which shows that the forecasting ability is improved significantly after considering conditional heteroscedasticity. G-AFNS model is suitable to be applied to the national debt market of our country. Then, in the analysis of treasury bond management strategy, we focus on the construction of bond immune combination, which is consistent with DNS vector duration, through the complete matching of horizontal factor duration, slope factor duration and curvature factor duration. In order to eliminate the interest rate risk brought by the change of term structure of interest rate on the value of bond portfolio, this paper investigates the immune portfolio adjustment every 1 month, 2 months and 3 months, respectively. The results show that if the term structure of interest rate does not change every two months to ensure the immune effect, it should be a more scientific and reasonable frequency.
【學位授予單位】:廈門大學
【學位級別】:碩士
【學位授予年份】:2014
【分類號】:F832.51;F224
【參考文獻】
相關期刊論文 前10條
1 王志強;張姣;;久期配比策略的免疫性分析——來自中國國債市場的經(jīng)驗證據(jù)[J];財經(jīng)問題研究;2009年11期
2 吳雄偉,謝赤;銀行間債券市場回購利率的ARCH/GARCH模型及其波動性分析[J];系統(tǒng)工程;2002年05期
3 范龍振,張國慶;仿射模型、廣義仿射模型與上交所利率期限結構[J];管理工程學報;2005年03期
4 宋福鐵;陳浪南;;卡爾曼濾波法模擬和預測滬市國債期限結構[J];管理科學;2006年06期
5 范龍振;;短期利率模型在上交所債券市場上的實證分析[J];管理科學學報;2007年02期
6 洪永淼;林海;;中國市場利率動態(tài)研究——基于短期國債回購利率的實證分析[J];經(jīng)濟學(季刊);2006年01期
7 余文龍;王安興;;基于動態(tài)Nelson-Siegel模型的國債管理策略分析[J];經(jīng)濟學(季刊);2010年04期
8 惠曉峰,柳鴻生,胡偉,何丹青;基于時間序列GARCH模型的人民幣匯率預測[J];金融研究;2003年05期
9 唐革榕,朱峰;我國國債收益率曲線變動模式及組合投資策略研究[J];金融研究;2003年11期
10 楊寶臣;廖珊;蘇云鵬;;基于利率期限結構預測的債券組合風險管理[J];金融研究;2012年10期
,本文編號:1378344
本文鏈接:http://sikaile.net/jingjilunwen/jinrongzhengquanlunwen/1378344.html