基于ARIMA與預(yù)期性指標(biāo)的我國(guó)通貨膨脹預(yù)測(cè)研究
[Abstract]:The effective implementation of central bank monetary policy and rational evasion of inflation risk by enterprises and households all need to predict inflation accurately. Because the mechanism and influencing factors of inflation are very complicated, the forecast of inflation should be scientific and artistic. First, Arima model is used to forecast inflation in China. Arima model was established for monthly and quarterly CPI data from 2008 to 2015. The mean square prediction error, the average absolute prediction error and the average correct forecast direction are used to test the forecast accuracy of the monthly and quarterly inflation forecast values. Then, the author predicts China's inflation by using the artistically strong expectation index method. This paper selects four typical inflation expectation indexes and makes a comparative analysis by using three prediction precision indicators. The results show that the weighted average index predicted by Wande CPI and Runrun is more accurate and can effectively forecast monthly and quarterly inflation respectively. Then, based on the expected index method and Arima model, a combination forecasting model with strong scientific and artistic character is constructed to forecast the monthly and quarterly inflation in China. The prediction accuracy of Arima model and combined prediction model is compared by using three prediction precision indexes. The results show that the combined prediction model has the highest prediction accuracy, and the predictive index method has higher prediction accuracy. Policy advice is to use big data technology to mine inflation data to improve the quality of data needed for inflation forecasting; for central banks, the effect of monetary policy is mainly apparent half a year after the implementation of the policy. There is a need to construct high-precision semi-annual and annual inflation expectations indicators and to use composite forecasting models to forecast inflation; for small and medium-sized enterprises and households, simplicity and convenience, We can forecast inflation by using the expected index method.
【學(xué)位授予單位】:青島大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:F822.5
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 應(yīng)意楠;;美國(guó)的通貨膨脹建模及預(yù)測(cè):基于ARMA模型的實(shí)證研究[J];財(cái)經(jīng)界(學(xué)術(shù)版);2016年17期
2 嚴(yán)鈺童;崔自洪;;利率期限結(jié)構(gòu)理論綜述[J];全國(guó)商情;2016年24期
3 肖良;;基于季節(jié)性ARIMA模型的居民消費(fèi)水平預(yù)測(cè)[J];統(tǒng)計(jì)與決策;2016年08期
4 薛曄;藺琦珠;任耀;;我國(guó)通貨膨脹風(fēng)險(xiǎn)的預(yù)測(cè)模型——基于決策樹(shù)-BP神經(jīng)網(wǎng)絡(luò)[J];經(jīng)濟(jì)問(wèn)題;2016年01期
5 郭永濟(jì);丁慧;范從來(lái);;中國(guó)通貨膨脹動(dòng)態(tài)模型預(yù)測(cè)的實(shí)證研究[J];中國(guó)經(jīng)濟(jì)問(wèn)題;2015年05期
6 楊穎梅;;基于ARIMA模型的北京居民消費(fèi)價(jià)格指數(shù)預(yù)測(cè)[J];統(tǒng)計(jì)與決策;2015年04期
7 蔣傳進(jìn);;組合預(yù)測(cè)中的預(yù)測(cè)精度與預(yù)測(cè)風(fēng)險(xiǎn)分析[J];統(tǒng)計(jì)與決策;2015年03期
8 徐國(guó)祥;代吉慧;;中國(guó)大宗商品現(xiàn)貨價(jià)格指數(shù)的構(gòu)建及預(yù)測(cè)能力研究[J];統(tǒng)計(jì)研究;2014年12期
9 賈凱威;韓家彬;楊洋;;基于SARIMA模型的短期通貨膨脹預(yù)測(cè)[J];統(tǒng)計(jì)與決策;2014年22期
10 金雯雯;陳亮;毛德勇;葉茜茜;;利率期限結(jié)構(gòu)內(nèi)含的宏觀經(jīng)濟(jì)信息——基于TVP-VAR模型的時(shí)變參數(shù)研究[J];經(jīng)濟(jì)評(píng)論;2014年05期
相關(guān)碩士學(xué)位論文 前2條
1 劉海萍;中國(guó)主要股指的分形分析與BP神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)[D];大連理工大學(xué);2013年
2 楊俏;基于調(diào)查數(shù)據(jù)的通貨膨脹預(yù)測(cè)方法研究[D];中國(guó)人民大學(xué);2008年
,本文編號(hào):2124287
本文鏈接:http://sikaile.net/jingjilunwen/huobiyinxinglunwen/2124287.html