基于費(fèi)米分布函數(shù)的財(cái)務(wù)預(yù)警模型實(shí)證研究——以我國(guó)服務(wù)性行業(yè)上市公司為例
發(fā)布時(shí)間:2018-06-04 15:31
本文選題:費(fèi)米分布模型 + 因子分析 ; 參考:《會(huì)計(jì)之友》2017年03期
【摘要】:通過(guò)引入一種具有統(tǒng)計(jì)學(xué)原理的費(fèi)米分布模型對(duì)企業(yè)財(cái)務(wù)狀況進(jìn)行了預(yù)警實(shí)證研究,結(jié)果發(fā)現(xiàn):當(dāng)賦予費(fèi)米分布模型在財(cái)務(wù)預(yù)警領(lǐng)域的物理內(nèi)涵后,一定程度上能夠?qū)斎氲钠髽I(yè)綜合財(cái)務(wù)得分值E進(jìn)行準(zhǔn)確預(yù)測(cè),其準(zhǔn)確性主要決定于研究樣本費(fèi)米面E_F的選擇。E_F越接近樣本的實(shí)際值,則預(yù)警準(zhǔn)確率會(huì)顯著提高;同時(shí),獲得具有正、負(fù)相關(guān)性的E值對(duì)該模型的財(cái)務(wù)預(yù)警準(zhǔn)確率至關(guān)重要。采用因子分析法和正、負(fù)相關(guān)性財(cái)務(wù)指標(biāo)算術(shù)和的方法,分別對(duì)獲取的E值輸入費(fèi)米分布模型進(jìn)行研究,表明采用因子分析法所得的E值由于考慮的企業(yè)財(cái)務(wù)指標(biāo)過(guò)多過(guò)雜,對(duì)因子分析法所建模型和費(fèi)米分布模型的預(yù)警準(zhǔn)確率均產(chǎn)生了一定干擾。相比之下,采用正、負(fù)相關(guān)性財(cái)務(wù)指標(biāo)算術(shù)和得到的E值能夠有效提高費(fèi)米分布模型的二進(jìn)制預(yù)警準(zhǔn)確率。
[Abstract]:By introducing a kind of Fermi distribution model with statistical principle, this paper makes an empirical study on the financial situation of an enterprise. The results show that: when the Fermi distribution model is endowed with the physical connotation in the field of financial early warning, To a certain extent, it is possible to accurately predict the integrated financial score E of the input enterprise. Its accuracy is mainly determined by studying the selection of sample Feimian ESP. The closer the Estack F is to the actual value of the sample, the higher the early warning accuracy rate will be significantly improved; at the same time, Obtaining E value with positive and negative correlation is very important to the financial early warning accuracy of the model. Using the methods of factor analysis and arithmetic sum of positive and negative correlation financial indexes, the input Fermi distribution model of the obtained E value is studied respectively. The results show that the E value obtained by factor analysis method is too complex because of the excessive financial indexes considered. The early warning accuracy of the model built by factor analysis method and Fermi distribution model is disturbed to a certain extent. By contrast, the arithmetic and E value of positive and negative correlation financial indexes can effectively improve the accuracy of binary early warning of Fermi distribution model.
【作者單位】: 哈爾濱理工大學(xué)經(jīng)濟(jì)學(xué)院;
【分類(lèi)號(hào)】:F719;F715.5
,
本文編號(hào):1977888
本文鏈接:http://sikaile.net/jingjilunwen/fwjj/1977888.html
最近更新
教材專(zhuān)著