存量房批量評估系統(tǒng)的研究與實現(xiàn)
[Abstract]:In the process of real estate value evaluation, there are many problems, such as different evaluation criteria, excessive cost and so on, which lead to the phenomenon of tax loss and social injustice to a certain extent. Many developed countries in Europe and America began to use computer-aided batch evaluation method many years ago. Computer-assisted Mass Appraisal evaluation (CAMA), which is based on the original cost method, market comparison method and income method evaluation principle, combines computer technology and statistical analysis technology to speed up the market value of a certain type of property in large quantities. A method of efficient evaluation. Now in developed countries in Europe and America, batch evaluation has gradually replaced single assessment and is widely used in tax base assessment of real estate. In contrast, batch evaluation technology in China is still in the initial stage of application. Thanks to the batch evaluation and promotion of stock housing started by the Ministry of Finance and the General Administration of Taxation in various regions in the second half of 2009, at present, CAMA systems have been initially established in most regions of our country. And on July 1, 2012, the transaction price of stock house declared by taxpayers has been comprehensively evaluated. However, the design of real estate tax base assessment system in various countries is closely related to the national economic structure, the establishment of government functional departments, the reform of tax system development, the legal system, and so on. The construction of CAMA system in China cannot copy the theory of foreign countries. In particular, the core of batch evaluation, automatic evaluation model (Automated Valuation Model), should consider the actual situation of our country, and localize and improve the mature batch evaluation technology abroad. In this paper, the concept and principle of batch evaluation technology are introduced in detail, the development situation at home and abroad is analyzed, and the concrete steps to implement batch evaluation are summarized systematically. The implementation of CAMA system has two very important key points, one is to build a comprehensive, true and accurate real estate information database, the other is to build an automatic evaluation model suitable for a specific property type. In this paper, the implementation of the above two key points is discussed, and the theory of automatic evaluation model is emphatically introduced. Then, this paper puts forward the batch evaluation technology scheme suitable for our country. According to the problems existing in the actual construction and operation of CAMA system in various parts of our country, this paper puts forward and constructs a comprehensive feature price model and an automatic evaluation model of transaction cases. Multiple linear regression analysis was used to calibrate the model. Taking the stock house of a certain city as the research object, this paper makes an empirical test on the above automatic evaluation model. Through a series of evaluation and inspection criteria, this paper verifies that the batch evaluation scheme is suitable for the stock housing market in China, and the evaluation effect is good. Then, the application of backpropagation neural network (BP neural network), a computational model of neural network, in real estate batch evaluation is studied in this paper. According to the characteristics of large amount of data and more feature vectors in the field of real estate batch evaluation, this paper improves the inherent "slow convergence speed" of back propagation algorithm, and makes an empirical test on the calculation model of back propagation neural network. Good results have been achieved. Finally, based on the integrated feature price model and the automatic evaluation model of transaction cases, this paper uses J2EE/Java EE technology to realize the stock house batch evaluation system, and introduces the key technologies in the system in detail.
【學(xué)位授予單位】:杭州電子科技大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2013
【分類號】:TP311.52;TP183
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 陳小悅;孫力強(qiáng);;關(guān)于建立中國房地產(chǎn)稅批量評估系統(tǒng)的幾點思考[J];財政研究;2007年12期
2 耿繼進(jìn);何素芳;;房地產(chǎn)計稅價格批量評估實證研究[J];地理空間信息;2011年03期
3 薛峰;梁鋒;徐書勛;王彪任;;基于Spring MVC框架的Web研究與應(yīng)用[J];合肥工業(yè)大學(xué)學(xué)報(自然科學(xué)版);2012年03期
4 張一童;;稅基批量評估方法應(yīng)用的難點[J];合作經(jīng)濟(jì)與科技;2009年11期
5 夏峗;李志蜀;;基于Hibernate框架的數(shù)據(jù)持久化層的研究及其應(yīng)用[J];計算機(jī)應(yīng)用;2008年09期
6 陸瓊瑜;童學(xué)鋒;;BP算法改進(jìn)的研究[J];計算機(jī)工程與設(shè)計;2007年03期
7 龔曙明;歐陽資生;;人口自適應(yīng)回歸預(yù)測模型與實證分析[J];數(shù)理統(tǒng)計與管理;2006年03期
8 常新;劉麗;;香港差餉稅制及啟示[J];涉外稅務(wù);2011年05期
9 唐慧;吳翔華;;存量房交易計稅價格批量評估典型技術(shù)路線比較[J];稅務(wù)與經(jīng)濟(jì);2012年01期
10 賈生華,溫海珍;房地產(chǎn)特征價格模型的理論發(fā)展及其應(yīng)用[J];外國經(jīng)濟(jì)與管理;2004年05期
相關(guān)碩士學(xué)位論文 前10條
1 胡鐘;基于J2EE多層架構(gòu)技術(shù)的Web應(yīng)用研究[D];浙江工業(yè)大學(xué);2011年
2 童飛;基于BP神經(jīng)網(wǎng)絡(luò)的水上交通事故預(yù)測及MATLAB實現(xiàn)[D];武漢理工大學(xué);2005年
3 王海龍;基于J2EE的企業(yè)應(yīng)用體系架構(gòu)的研究與設(shè)計[D];同濟(jì)大學(xué);2006年
4 馬俊;基于正則表達(dá)式技術(shù)的信息搜集引擎應(yīng)用研究[D];電子科技大學(xué);2006年
5 高明;基于Java平臺的通用腳本引擎的研究與實現(xiàn)[D];北京郵電大學(xué);2007年
6 周琳娜;基于物業(yè)稅開征目的的批量評估系統(tǒng)研究[D];廈門大學(xué);2007年
7 鄭高啟;基于Spring架構(gòu)和Hibernate數(shù)據(jù)持久化的開發(fā)方法的研究及其應(yīng)用[D];電子科技大學(xué);2008年
8 王坤;基于J2EE平臺Spring MVC框架開發(fā)的MIS系統(tǒng)設(shè)計與實現(xiàn)[D];華東師范大學(xué);2008年
9 吳義龍;基于DWR框架的就業(yè)信息管理系統(tǒng)的設(shè)計與實現(xiàn)[D];華中科技大學(xué);2008年
10 孫娓娓;BP神經(jīng)網(wǎng)絡(luò)的算法改進(jìn)及應(yīng)用研究[D];重慶大學(xué);2009年
本文編號:2154854
本文鏈接:http://sikaile.net/jingjilunwen/fangdichanjingjilunwen/2154854.html