基于條件相對平均熵的個性化推薦算法研究與應用
[Abstract]:With the popularity of the Internet and the rapid development of electronic commerce, network transactions are becoming more and more popular, and more commodities are changing from real transactions to virtual transactions, which leads to the rapid growth of data types and data volume of information resources. It promotes the research and development of e-commerce personalized recommendation. At present, the core idea of E-commerce recommendation is based on a variety of related relationships, such as user relations, commodity relations, the relationship between users and commodities. However, when there is no or little consumer behavior data, or when users have fewer common choices, or when a commodity is not in the historical behavior data, the correlation will be lacking or insufficient, leading to the inability to predict by similarity. The problem of data sparsity or cold start reduces the accuracy of recommendation, and it is difficult to provide recommendation services to users properly. In addition, the consumer's consumption preference and characteristics have an important influence on the consumer behavior. When the utility of the commodity is in line with the consumer's consumption character, the user may have the consumer behavior. This provides a new perspective for the personalized recommendation of e-commerce. Therefore, how to reduce or eliminate the above problems, from the mass of consumer behavior data mining users interested or need goods, and accurately recommend to the target users, has become the focus of research on personalized recommendation. The main work of this paper is as follows: (1) the personalized recommendation algorithm and the discovery algorithm of complex network community structure and their characteristics are analyzed in detail. (2) considering the demand for accuracy of the current personalized recommendation system, the representative CNM personalized recommendation algorithm is selected. The CNM algorithm is optimized and verified by introducing point weight and edge weight distance similarity formula. (3) based on the analysis of consumer character, conditional mutual information and conditional relative average entropy are introduced to obtain the initial node input order in K2 algorithm. Then we use CH score function and posteriori probability function to study Bayesian network and analyze the consumer character of user. (4) using the well-learned Bayesian network to reason to judge the relationship between the products of the user to recommend domain and the consumer character. Finally, the final commodity recommendation domain is obtained. (5) the requirement analysis and system design of telecom idle assets market-oriented trading system are given, and the research results of this paper are applied to the asset recommendation module of the system.
【學位授予單位】:南昌大學
【學位級別】:碩士
【學位授予年份】:2016
【分類號】:TP391.3
【相似文獻】
相關(guān)期刊論文 前10條
1 徐義峰;徐云青;劉曉平;;一種基于時間序列性的推薦算法[J];計算機系統(tǒng)應用;2006年10期
2 余小鵬;;一種基于多層關(guān)聯(lián)規(guī)則的推薦算法研究[J];計算機應用;2007年06期
3 張海玉;劉志都;楊彩;賈松浩;;基于頁面聚類的推薦算法的改進[J];計算機應用與軟件;2008年09期
4 張立燕;;一種基于用戶事務模式的推薦算法[J];福建電腦;2009年03期
5 王晗;夏自謙;;基于蟻群算法和瀏覽路徑的推薦算法研究[J];中國科技信息;2009年07期
6 周珊丹;周興社;王海鵬;倪紅波;張桂英;苗強;;智能博物館環(huán)境下的個性化推薦算法[J];計算機工程與應用;2010年19期
7 王文;;個性化推薦算法研究[J];電腦知識與技術(shù);2010年16期
8 張愷;秦亮曦;寧朝波;李文閣;;改進評價估計的混合推薦算法研究[J];微計算機信息;2010年36期
9 夏秀峰;代沁;叢麗暉;;用戶顯意識下的多重態(tài)度個性化推薦算法[J];計算機工程與應用;2011年16期
10 楊博;趙鵬飛;;推薦算法綜述[J];山西大學學報(自然科學版);2011年03期
相關(guān)會議論文 前10條
1 王韜丞;羅喜軍;杜小勇;;基于層次的推薦:一種新的個性化推薦算法[A];第二十四屆中國數(shù)據(jù)庫學術(shù)會議論文集(技術(shù)報告篇)[C];2007年
2 唐燦;;基于模糊用戶心理模式的個性化推薦算法[A];2008年計算機應用技術(shù)交流會論文集[C];2008年
3 秦國;杜小勇;;基于用戶層次信息的協(xié)同推薦算法[A];第二十一屆中國數(shù)據(jù)庫學術(shù)會議論文集(技術(shù)報告篇)[C];2004年
4 周玉妮;鄭會頌;;基于瀏覽路徑選擇的蟻群推薦算法:用于移動商務個性化推薦系統(tǒng)[A];社會經(jīng)濟發(fā)展轉(zhuǎn)型與系統(tǒng)工程——中國系統(tǒng)工程學會第17屆學術(shù)年會論文集[C];2012年
5 蘇日啟;胡皓;汪秉宏;;基于網(wǎng)絡的含時推薦算法[A];第五屆全國復雜網(wǎng)絡學術(shù)會議論文(摘要)匯集[C];2009年
6 梁莘q,
本文編號:2205547
本文鏈接:http://sikaile.net/jingjilunwen/dianzishangwulunwen/2205547.html