基于主題特征的情感分類及推薦算法研究
[Abstract]:With the development of e-commerce, more and more people choose to use the Internet for shopping, entertainment, communication and work. Users often spend a lot of time searching, browsing, and selecting goods or services. How to recommend products and services to the needs of users has become a problem that must be solved by product and service providers. However, the traditional recommendation algorithm only analyzes the relationship between the product and the user, and does not carry on the emotion analysis and the processing to the comment text, which affects the quality of the recommendation to a certain extent. From the two aspects of emotional analysis and product recommendation, the thesis realizes more accurate product recommendation to users. Firstly, from the perspective of the whole meaning of Chinese text, the topic distribution of Chinese text is obtained by using the text topic model (LDAs). In the process of feature selection and extraction, besides the feature of short text, the subject feature of short text is considered, and the emotion classification of Chinese text is realized under the framework of reserved semi-supervised learning. The experimental results show that the accuracy of text emotion classification is better than that without text theme feature. On the basis of emotion analysis and collaborative filtering of product comment text, using the definition of score similarity, the emotional similarity is put forward, and the comprehensive similarity of emotion similarity and score similarity is used to judge and select the neighboring users. Finally, a product recommendation algorithm based on emotion analysis is proposed. The affective similarity method is based on the semi-supervised learning emotion classification algorithm proposed in this paper. Compared with the traditional collaborative filtering recommendation algorithm, the experiment shows that the product recommendation algorithm based on emotion analysis is better than the traditional collaborative filtering recommendation algorithm.
【學位授予單位】:天津大學
【學位級別】:碩士
【學位授予年份】:2016
【分類號】:TP391.1
【相似文獻】
相關期刊論文 前10條
1 徐義峰;徐云青;劉曉平;;一種基于時間序列性的推薦算法[J];計算機系統(tǒng)應用;2006年10期
2 余小鵬;;一種基于多層關聯(lián)規(guī)則的推薦算法研究[J];計算機應用;2007年06期
3 張海玉;劉志都;楊彩;賈松浩;;基于頁面聚類的推薦算法的改進[J];計算機應用與軟件;2008年09期
4 張立燕;;一種基于用戶事務模式的推薦算法[J];福建電腦;2009年03期
5 王晗;夏自謙;;基于蟻群算法和瀏覽路徑的推薦算法研究[J];中國科技信息;2009年07期
6 周珊丹;周興社;王海鵬;倪紅波;張桂英;苗強;;智能博物館環(huán)境下的個性化推薦算法[J];計算機工程與應用;2010年19期
7 王文;;個性化推薦算法研究[J];電腦知識與技術;2010年16期
8 張愷;秦亮曦;寧朝波;李文閣;;改進評價估計的混合推薦算法研究[J];微計算機信息;2010年36期
9 夏秀峰;代沁;叢麗暉;;用戶顯意識下的多重態(tài)度個性化推薦算法[J];計算機工程與應用;2011年16期
10 楊博;趙鵬飛;;推薦算法綜述[J];山西大學學報(自然科學版);2011年03期
相關會議論文 前10條
1 王韜丞;羅喜軍;杜小勇;;基于層次的推薦:一種新的個性化推薦算法[A];第二十四屆中國數(shù)據(jù)庫學術會議論文集(技術報告篇)[C];2007年
2 唐燦;;基于模糊用戶心理模式的個性化推薦算法[A];2008年計算機應用技術交流會論文集[C];2008年
3 秦國;杜小勇;;基于用戶層次信息的協(xié)同推薦算法[A];第二十一屆中國數(shù)據(jù)庫學術會議論文集(技術報告篇)[C];2004年
4 周玉妮;鄭會頌;;基于瀏覽路徑選擇的蟻群推薦算法:用于移動商務個性化推薦系統(tǒng)[A];社會經(jīng)濟發(fā)展轉(zhuǎn)型與系統(tǒng)工程——中國系統(tǒng)工程學會第17屆學術年會論文集[C];2012年
5 蘇日啟;胡皓;汪秉宏;;基于網(wǎng)絡的含時推薦算法[A];第五屆全國復雜網(wǎng)絡學術會議論文(摘要)匯集[C];2009年
6 梁莘q,
本文編號:2154883
本文鏈接:http://sikaile.net/jingjilunwen/dianzishangwulunwen/2154883.html