多層聚簇中基于協(xié)同過濾的跨類推薦算法
發(fā)布時間:2018-03-01 00:29
本文關(guān)鍵詞: 多層聚簇 跨類挖掘 推薦系統(tǒng) 協(xié)同過濾 出處:《小型微型計算機系統(tǒng)》2017年04期 論文類型:期刊論文
【摘要】:大多數(shù)電子商務(wù)系統(tǒng)采用協(xié)同過濾的方法向用戶推薦不同類別的商品.分析發(fā)現(xiàn),相似用戶對相關(guān)類別商品的喜好程度類似(稱之跨類關(guān)聯(lián)).因此,推薦時應(yīng)同時考慮用戶之間和商品之間的關(guān)聯(lián)度.實際應(yīng)用中,商品類別通常組織成多級目錄,能夠體現(xiàn)不同商品之間的層次關(guān)系.由于低層類別商品少,而高層類別商品多,因此不同層類別的數(shù)據(jù)稀疏度不同.為緩解現(xiàn)有推薦算法數(shù)據(jù)稀疏問題,本文提出一個高效多層挖掘算法,挖掘不同類別層次上用戶-商品/類別的關(guān)聯(lián)度.為提高推薦性能,還提出一個基于層次聚簇的跨類推薦通用框架,此模型擴展現(xiàn)有協(xié)同過濾算法.在真實數(shù)據(jù)集上的實驗表明,本文提出的算法具有較高的準(zhǔn)確率和效率.
[Abstract]:Most e-commerce systems use collaborative filtering to recommend different categories of goods to users. Analysis shows that similar users have similar preferences for related categories of goods (known as cross-class associations). In practical applications, commodity categories are usually organized into multilevel catalogs, which can reflect the hierarchical relationship between different commodities. Therefore, the data sparsity of different classes is different. In order to alleviate the problem of data sparsity in existing recommendation algorithms, this paper proposes an efficient multi-layer mining algorithm to mine the user-commodity / class correlation at different class levels. A general cross-class recommendation framework based on hierarchical clustering is proposed. The model extends the existing collaborative filtering algorithms. Experiments on real data sets show that the proposed algorithm has high accuracy and efficiency.
【作者單位】: 武漢大學(xué)計算機學(xué)院;武漢大學(xué)信息管理學(xué)院;
【基金】:國家自然科學(xué)基金青年項目(61303025)資助
【分類號】:TP391.3
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 湯蓉;唐常杰;徐開闊;左R,
本文編號:1549645
本文鏈接:http://sikaile.net/jingjilunwen/dianzishangwulunwen/1549645.html
最近更新
教材專著